长春备战高考化学培优专题复习化学反应的速率与限度练习题.docx
- 文档编号:28457934
- 上传时间:2023-07-13
- 格式:DOCX
- 页数:40
- 大小:339.66KB
长春备战高考化学培优专题复习化学反应的速率与限度练习题.docx
《长春备战高考化学培优专题复习化学反应的速率与限度练习题.docx》由会员分享,可在线阅读,更多相关《长春备战高考化学培优专题复习化学反应的速率与限度练习题.docx(40页珍藏版)》请在冰豆网上搜索。
长春备战高考化学培优专题复习化学反应的速率与限度练习题
长春备战高考化学培优专题复习化学反应的速率与限度练习题
一、化学反应的速率与限度练习题(含详细答案解析)
1.能源与材料、信息一起被称为现代社会发展的三大支柱。
面对能源枯竭的危机,提高能源利用率和开辟新能源是解决这一问题的两个主要方向。
(1)化学反应速率和限度与生产、生活密切相关,这是化学学科关注的方面之一。
某学生为了探究锌与盐酸反应过程中的速率变化,在400mL稀盐酸中加入足量的锌粉,用排水法收集反应放出的氢气,实验记录如下(累计值):
时间/min
1
2
3
4
5
氢气体积/mL(标况)
100
240
464
576
620
①哪一段时间内反应速率最大:
__________min(填“0~1”“1~2”“2~3”“3~4”或“4~5”)。
②另一学生为控制反应速率防止反应过快难以测量氢气体积。
他事先在盐酸中加入等体积的下列溶液以减慢反应速率但不影响生成氢气的量。
你认为可行的是____________(填字母序号)。
A.KCl溶液B.浓盐酸C.蒸馏水D.CuSO4溶液
(2)如图为原电池装置示意图:
①将铝片和铜片用导线相连,一组插入浓硝酸中,一组插入烧碱溶液中,分别形成了原电池,在这两个原电池中,作负极的分别是_______(填字母)。
A.铝片、铜片B.铜片、铝片
C.铝片、铝片D.铜片、铜片
写出插入浓硝酸溶液中形成的原电池的负极反应式:
_______________。
②若A为Cu,B为石墨,电解质为FeCl3溶液,工作时的总反应为2FeCl3+Cu=2FeCl2+CuCl2。
写出B电极反应式:
________;该电池在工作时,A电极的质量将_____(填“增加”“减小”或“不变”)。
若该电池反应消耗了0.1molFeCl3,则转移电子的数目为_______。
【答案】2~3ACBCu-2e−=Cu2+Fe3++e−=Fe2+减小0.1NA
【解析】
【分析】
(1)①先分析各个时间段生成氢气的体积,然后确定反应速率最大的时间段。
②A.加入KCl溶液,相当于加水稀释;
B.加入浓盐酸,增大c(H+);
C.加入蒸馏水,稀释盐酸;
D.加入CuSO4溶液,先与Zn反应生成Cu,形成原电池。
(2)①将铝片和铜片用导线相连,一组插入浓硝酸中,铝发生钝化,铜失电子发生反应;一组插入烧碱溶液中,铜不反应,铝与电解质发生反应,由此确定两个原电池中的负极。
由此可写出插入浓硝酸溶液中形成的原电池的负极反应式。
②若A为Cu,B为石墨,电解质为FeCl3溶液,工作时A作负极,B作正极,则B电极,Fe3+得电子生成Fe2+;该电池在工作时,A电极上Cu失电子生成Cu2+进入溶液。
若该电池反应消耗了0.1molFeCl3,则Fe3+转化为Fe2+,可确定转移电子的数目。
【详解】
(1)①在1min的时间间隔内,生成氢气的体积分别为140mL、224mL、112mL、44mL,从而确定反应速率最大的时间段为2~3min。
答案为:
2~3;
②A.加入KCl溶液,相当于加水稀释,反应速率减慢但不影响生成氢气的体积,A符合题意;
B.加入浓盐酸,增大c(H+),反应速率加快且生成氢气的体积增多,B不合题意;
C.加入蒸馏水,稀释盐酸,反应速率减慢但不影响生成氢气的体积,C符合题意;
D.加入CuSO4溶液,先与Zn反应生成Cu,形成原电池,反应速率加快但不影响氢气的总量;
故选AC。
答案为:
AC;
(2)①将铝片和铜片用导线相连,一组插入浓硝酸中,铝发生钝化,铜失电子发生反应;一组插入烧碱溶液中,铜不反应,铝与电解质发生反应,由此确定两个原电池中的负极分别为铜片、铝片,故选B。
由此可写出插入浓硝酸溶液中形成的原电池的负极反应式为Cu-2e−=Cu2+。
答案为:
B;Cu-2e−=Cu2+;
②若A为Cu,B为石墨,电解质为FeCl3溶液,工作时A作负极,B作正极,则B电极上Fe3+得电子生成Fe2+,电极反应式为Fe3++e−=Fe2+;该电池在工作时,A电极上Cu失电子生成Cu2+进入溶液,A电极的质量将减小。
若该电池反应消耗了0.1molFeCl3,则Fe3+转化为Fe2+,可确定转移电子的数目为0.1NA。
答案为:
减小;0.1NA。
【点睛】
虽然铝的金属活动性比铜强,但由于在常温下,铝表面形成钝化膜,阻止了铝与浓硝酸的进一步反应,所以铝与浓硝酸的反应不能持续进行,铝作正极,铜作负极。
2.用酸性KMnO4和H2C2O4(草酸)反应研究影响反应速率的因素。
一实验小组欲通过测定单位时间内生成CO2的速率,探究某种影响化学反应速率的因素,设计实验方案如下(KMnO4溶液已酸化):
实验序号
A溶液
B溶液
①
20mL0.1mol·L-1H2C2O4溶液
30mL0.01mol·L-1KMnO4溶液
②
20mL0.2mol·L-1H2C2O4溶液
30mL0.01mol·L-1KMnO4溶液
(1)该反应的离子方程式___________________________。
(已知H2C2O4是二元弱酸)
(2)该实验探究的是_____________因素对化学反应速率的影响。
相同时间内针筒中所得CO2的体积大小关系是_________________<_____________(填实验序号)。
(3)若实验①在2min末收集了2.24mLCO2(标准状况下),则在2min末,c(MnO4-)=__________mol/L(假设混合液体积为50mL)
(4)除通过测定一定时间内CO2的体积来比较反应速率,本实验还可通过测定_____________来比较化学反应速率。
(一条即可)
(5)小组同学发现反应速率总是如图,其中t1~t2时间内速率变快的主要原因可能是:
①__________________________;②__________________________。
【答案】2MnO4-+5H2C2O4+6H+=2Mn2++10CO2↑+8H2O浓度①②0.0056KMnO4溶液完全褪色所需时间或产生相同体积气体所需的时间该反应放热产物Mn2+是反应的催化剂
【解析】
【详解】
(1)高锰酸钾溶液具有强氧化性,把草酸氧化成CO2,根据化合价升降法进行配平,其离子反应方程式为:
2MnO4-+5H2C2O4+6H+=2Mn2++10CO2↑+8H2O;
(2)对比表格数据可知,草酸的浓度不一样,因此是探究浓度对化学反应速率的影响,浓度越大,反应速率越快,则①<②;
(3)根据反应方程式并结合CO2的体积,求出消耗的n(KMnO4)=2×10-5mol,剩余n(KMnO4)=(30×10-3×0.01-2×10-5)mol=2.8×10-4mol,c(KMnO4)=2.8×10-4mol÷50×10-3L=0.0056mol·L-1;
(4)除通过测定一定时间内CO2的体积来比较反应速率,还可以通过测定KMnO4溶液完全褪色所需时间或产生相同体积气体所需的时间来比较化学反应速率;
(5)t1~t2时间内速率变快的主要原因可能是:
①此反应是放热反应,温度升高,虽然反应物的浓度降低,但温度起决定作用;②可能产生的Mn2+是反应的催化剂,加快反应速率。
3.一定条件下,在2L密闭容器中发生反应:
3A(g)+B(g)⇌2C(g),开始时加入4molA、6molB、2molC,2min末测得C的物质的量是3mol。
(1)用A的浓度变化表示的反应速率是:
________;
(2)在2min末,B的浓度为:
___________;
(3)若改变下列一个条件,推测该反应速率发生的变化(填变大、变小、或不变)①升高温度,化学反应速率_____;②充入1molB,化学反应速率___;③将容器的体积变为3L,化学反应速率_________。
【答案】0.375mol·L-1·min-12.75mol·L-1变大变大变小
【解析】
【分析】
根据题干信息,建立三段式有:
据此分析解答。
【详解】
(1)2min内,用A的浓度变化表示的反应速率为:
,故答案为:
0.375mol·L-1·min-1;
(2)根据上述分析可知。
在2min末,B的物质的量为5.5mol,则B的浓度
,故答案为:
2.75mol·L-1;
(3)①升高温度,体系内活化分子数增多,有效碰撞几率增大,化学反应速率变大,故答案为:
变大;
②冲入1molB,体系内活化分子数增多,有效碰撞几率增大,化学反应速率变大,故答案为:
变大;
③将容器的体积变为3L,浓度减小,单位体积内的活化分子数减小,有效碰撞几率减小,化学反应速率变小,故答案为:
变小。
4.制造一次性医用口罩的原料之一丙烯是三大合成材料的基本原料,丙烷脱氢作为一条增产丙烯的非化石燃料路线具有极其重要的现实意义。
丙烷脱氢技术主要分为直接脱氢和氧化脱氢两种。
(1)根据下表提供的数据,计算丙烷直接脱氢制丙烯的反应C3H8(g)
C3H6(g)+H2(g)的∆H=___。
共价键
C-C
C=C
C-H
H-H
键能/(kJ∙mol-1)
348
615
413
436
(2)下图为丙烷直接脱氢制丙烯反应中丙烷和丙烯的平衡体积分数与温度、压强的关系(图中压强分别为1×104Pa和1×105Pa)
①在恒容密闭容器中,下列情况能说明该反应达到平衡状态的是__(填字母)。
A.∆H保持不变
B.混合气体的密度保持不变
C.混合气体的平均摩尔质量保持不变
D.单位时间内生成1molH-H键,同时生成1molC=C键
②欲使丙烯的平衡产率提高,下列措施可行的是____(填字母)
A.增大压强B.升高温度C.保持容积不变充入氩气
工业生产中为提高丙烯的产率,还常在恒压时向原料气中掺入水蒸气,其目的是_____。
③1×104Pa时,图中表示丙烷和丙烯体积分数的曲线分别是___、____(填标号)
④1×104Pa、500℃时,该反应的平衡常数Kp=____Pa(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数,计算结果保留两位有效数字)
(3)利用CO2的弱氧化性,科学家开发了丙烷氧化脱氢制丙烯的新工艺,该工艺可采用铬的氧化物作催化剂,已知C3H8+CO2(g)
C3H6(g)+CO(g)+H2O(l),该工艺可以有效消除催化剂表面的积炭,维持催化剂的活性,其原因是____,相对于丙烷直接裂解脱氢制丙烯的缺点是_____。
【答案】+123kJ∙mol-1CB该反应是气体分子数增多的反应,恒压条件下充入水蒸气容器体积增大,平衡右移ⅳⅰ3.3×103C与CO2反应生成CO,脱离催化剂表面生成有毒气体CO(或其他合理说法)
【解析】
【分析】
(1)比较丙烷与丙烯的结构,可确定断裂2个C-H键和1个C-C键,形成1个C=C键和1个H-H键,利用表中键能可计算C3H8(g)
C3H6(g)+H2(g)的∆H。
(2)①A.对于一个化学反应,方程式确定后,∆H确定,与反应进行的程度无关;
B.混合气体的质量和体积都不变,密度始终不变;
C.混合气体的质量不变,物质的量增大,平均摩尔质量不断减小;
D.反应发生后,总是存在单位时间内生成1molH-H键,同时生成1molC=C键。
②A.增大压强,平衡逆向移动;
B.升高温度,平衡正向移动;
C.保持容积不变充入氩气,平衡不受影响。
工业生产中为提高丙烯的产率,还常在恒压时向原料气中掺入水蒸气,可增大混合气的体积,减小与反应有关气体的浓度。
③1×104Pa与1×105Pa进行对比,从平衡移动的方向确定图中表示丙烷和丙烯体积分数的曲线。
④1×104Pa、500℃时,丙烷、丙烯、氢气的体积分数都为33.3%,由此可计算该反应的平衡常数Kp。
(3)CO2具有氧化性,能与催化剂表面的积炭发生反应生成一氧化碳气体,由此可确定原因及缺点。
【详解】
(1)比较丙烷与丙烯的结构,可确定断裂2个C-H键和1个C-C键,形成1个C=C键和1个H-H键,利用表中键能可计算C3H8(g)
C3H6(g)+H2(g)的∆H=(2×413+348)kJ∙mol-1-(615+436)kJ∙mol-1=+123kJ∙mol-1。
答案为:
+123kJ∙mol-1;
(2)①A.对于一个化学反应,方程式确定后,∆H确定,与反应进行的程度无关,A不合题意;
B.混合气体的质量和体积都不变,密度始终不变,所以密度不变时不一定达平衡状态,B不合题意;
C.混合气体的质量不变,物质的量增大,平均摩尔质量不断减小,当平均摩尔质量不变时,反应达平衡状态,C符合题意;
D.反应发生后,总是存在单位时间内生成1molH-H键,同时生成1molC=C键,反应不一定达平衡状态,D不合题意;
故选C。
答案为:
C;
②A.增大压强,平衡逆向移动,丙烯的平衡产率减小,A不合题意;
B.升高温度,平衡正向移动,丙烯的平衡产率增大,B符合题意;
C.保持容积不变充入氩气,平衡不受影响,C不合题意;
故选B。
答案为:
B;
工业生产中为提高丙烯的产率,还常在恒压时向原料气中掺入水蒸气,可增大混合气的体积,减小与反应有关气体的浓度,其目的是该反应为气体分子数增多的反应,恒压条件下充入水蒸气容器体积增大,平衡右移。
答案为:
该反应是气体分子数增多的反应,恒压条件下充入水蒸气容器体积增大,平衡右移;
③升高温度,平衡正向移动,丙烷的体积分数减小,丙烯的体积分数增大,则ⅰ、ⅲ为丙烷的曲线,ⅱ、ⅳ为丙烯的曲线,1×104Pa与1×105Pa相比,压强减小,平衡正向移动,从而得出表示丙烷体积分数的曲线为ⅳ,表示丙烯体积分数的曲线为ⅰ。
答案为:
ⅳ;ⅰ;
④1×104Pa、500℃时,丙烷、丙烯、氢气的体积分数都为33.3%,由此可计算该反应的平衡常数Kp=
=3.3×103。
答案:
3.3×103;
(3)CO2具有氧化性,能与催化剂表面的积炭发生反应生成一氧化碳气体,其原因是C与CO2反应生成CO,脱离催化剂表面;相对于丙烷直接裂解脱氢制丙烯的缺点是生成有毒气体CO(或其他合理说法)。
答案为:
C与CO2反应生成CO,脱离催化剂表面;生成有毒气体CO(或其他合理说法)。
【点睛】
利用键能计算反应热时,比较反应物与生成物的结构式,确定键的断裂与形成是解题的关键。
丙烷的结构式为
,丙烯的结构式为
,H2的结构式为H-H,由此可确定断键与成键的种类及数目。
5.Ⅰ.碳是形成化合物种类最多的元素,其单质及化合物是人类生产生活中的主要能源物质。
回答下列问题:
(1)有机物M经过太阳光光照可转化成N,转化过程如下:
ΔH=+88.6kJ/mol,则M、N相比,较稳定的是______。
(2)将Cl2和H2O(g)通过灼热的炭层,生成HCl和CO2,当有1molCl2参与反应时释放出145kJ热量,写出该反应的热化学方程式为___________。
Ⅱ.无色气体N2O4是一种强氧化剂,为重要的火箭推进剂之一。
N2O4与NO2转换的热化学方程式为N2O4(g)
2NO2(g) ΔH=+24.4kJ/mol。
(3)将一定量N2O4投入固定容积的真空容器中,下述现象能说明反应达到平衡的是_________。
A.v正(N2O4)=2v逆(NO2)B.体系颜色不变
C.气体平均相对分子质量不变D.气体密度不变
达到平衡后,升高温度,再次到达新平衡时,混合气体颜色_____(填“变深”、“变浅”或“不变”)。
Ⅲ.(4)常温下,设pH=5的H2SO4溶液中由水电离出的H+浓度为c1;pH=5的Al2(SO4)3溶液中由水电离出的H+浓度为c2,则
=________。
(5)常温下,pH=13的Ba(OH)2溶液aL与pH=3的H2SO4溶液bL混合。
若所得混合溶液呈中性,则a∶b=________。
(6)已知常温下HCN的电离平衡常数K=5.0×10-10。
将0.2mol/LHCN溶液和0.1mol/L的NaOH溶液等体积混合后,溶液中c(H+)、c(OH-)、c(CN-)、c(Na+)大小顺序为________________。
【答案】M2Cl2(g)+2H2O(g)+C(s)=4HCl(g)+CO2(g)ΔH=-290kJ/molBC变深
1:
100c(Na+)>c(CN-)>c(OH-)>c(H+)
【解析】
【分析】
Ⅰ.
(1)M转化为N是吸热反应,能量低的物质更稳定;
(2)有1molCl2参与反应时释放出145kJ热量,2mol氯气反应放热290kJ,结合物质聚集状态和对应反应焓变书写热化学方程式;
Ⅱ.(3)可逆反应到达平衡时,同种物质的正逆速率相等且保持不变,各组分的浓度、含量保持不变,由此衍生的其它一些量不变,判断平衡的物理量应随反应进行发生变化,该物理量由变化到不再变化说明到达平衡;正反应是吸热反应,其他条件不变,温度升高平衡正向移动,NO2的浓度增大;
Ⅲ.(4)酸抑制水电离,含有弱根离子的盐促进水电离;
(5)混合溶液呈中性,则酸碱恰好完全中和,即酸中c(H+)等于碱中c(OH﹣);
(6)CN﹣的水解平衡常数Kh=
=2×10﹣5>Ka,说明相同浓度的NaCN和HCN,NaCN水解程度大于HCN电离程度。
【详解】
Ⅰ.
(1)有机物M经过太阳光光照可转化成N,△H=+88.6kJ•mol﹣1,为吸热反应,可知M的能量低,能量越低越稳定,说明M稳定;
(2)有1molCl2参与反应时释放出145kJ热量,2mol氯气反应放热290kJ,反应的热化学方程式为2Cl2(g)+2H2O(g)+C(s)═4HCl(g)+CO2(g)△H=﹣290kJ•mol﹣1;
Ⅱ.(3)A.应是2v正(N2O4)=v逆(NO2)时反应达到平衡状态,故A错误;
B.体系颜色不变,说明二氧化氮浓度不变,反应到达平衡状态,故B正确;
C.混合气体总质量不变,随反应减小混合气体总物质的量增大,平均相对分子质量减小,当气体平均相对分子质量不变时,反应到达平衡状态,故C正确;
D.混合气体的总质量不变,容器的容积不变,气体密度始终不变,故D错误,
故答案为:
BC;
正反应是吸热反应,其他条件不变,温度升高平衡正向移动,c(NO2)增加,颜色加深;
Ⅲ.(4)常温下,设pH=5的H2SO4的溶液中由水电离出的H+浓度C1=10﹣9mol/L,pH=5的Al2(SO4)3溶液中由水电离出的H+浓度C2=10﹣5mol/L,则
=
=10﹣4;
(5)混合溶液呈中性,则酸碱恰好完全中和,即酸中c(H+)等于碱中c(OH﹣),氢氧化钡溶液中c(OH﹣)=0.1mol/L、硫酸中c(H+)=0.001mol/L,0.001b=0.1a,则a:
b=1:
10;
(6)CN﹣的水解平衡常数Kh=
=2×10﹣5>Ka,说明相同浓度的NaCN和HCN,NaCN水解程度大于HCN电离程度,混合溶液中溶质为等物质的量浓度的NaCN、HCN,水解程度大于弱酸的电离程度导致溶液呈碱性,则c(H+)<c(OH﹣),根据电荷守恒得c(CN﹣)<c(Na+),其水解程度较小,所以存在c(OH﹣)<c(CN﹣),所以离子浓度大小顺序为c(Na+)>c(CN﹣)>c(OH﹣)>c(H+)。
【点睛】
可逆反应达到平衡状态有两个核心的判断依据:
①正反应速率和逆反应速率相等。
②反应混合物中各组成成分的百分含量保持不变。
只要抓住这两个特征就可确定反应是否达到平衡状态,对于随反应的发生而发生变化的物理量如果不变了,即说明可逆反应达到了平衡状态。
判断化学反应是否达到平衡状态,关键是看给定的条件能否推出参与反应的任一物质的物质的量不再发生变化,即变量不再发生变化。
6.在2L密闭容器内,800℃时反应:
2NO(g)+O2(g)
2NO2(g)体系中,n(NO)随时间的变化如表:
时间(s)
0
1
2
3
4
5
n(NO)(mol)
0.020
0.010
0.008
0.007
0.007
0.007
(1)800℃,反应达到平衡时,NO的物质的量浓度是________。
(2)如图中表示NO2的变化的曲线是________。
用O2表示从0~2s内该反应的平均速率v=________。
(3)能说明该反应已达到平衡状态的是________。
a.v(NO2)=2v(O2)b.容器内压强保持不变
c.v逆(NO)=2v正(O2)d.容器内密度保持不变
(4)能使该反应的反应速率增大的是________。
a.及时分离出NO2气体b.适当升高温度
c.增大O2的浓度d.选择高效催化剂
【答案】0.0035mol/Lb1.5×10-3mol/(L·s)b、cb、c、d
【解析】
【分析】
【详解】
(1)800℃,反应达到平衡时,NO的物质的量浓度是c(NO)=n÷V=0.007mol÷2L=0.0035mol/L;
(2)NO2是生成物,每消耗2molNO,会产生2molNO2;反应过程消耗的NO的物质的量是n(NO)=0.020mol-0.007mol=0.0130mol,则反应产生的NO2的物质的量的n(NO2)=0.0130mol,则其浓度是c(NO2)=0.0130mol÷2L=0.0065mol/L,所以在图中表示NO2的变化的曲线是b;从0~2s内用NO表示的化学反应速率是v(NO)=(0.020-0.008)mol÷2L÷2s=0.003mol/(L∙s),由于v(NO):
v(O2)=2:
1,因此用O2表示从0~2s内该反应的平均速率v(O2)=
v(NO)=1.5×10-3mol/(L·s);
(3)a.在任何时刻都存在v(NO2)=2v(O2),因此不能判断反应处于平衡状态,错误;b.由于该反应是反应前后气体体积不等的反应,所以容器内压强保持不变,则反应处于平衡状态,正确;c.v逆(NO):
v逆(O2)=2:
1;由于v逆(NO):
v正(O2)=2:
1,所以v逆(O2)=v正(O2);正确;d.由于反应体系都是气体,因此在任何时候,无论反应是否处于平衡状态,容器内密度都保持不变,故不能作为判断平衡的标准,错误。
(4)a.及时分离出NO2气体,使生成物的浓度减小,则正反应的速率瞬间不变,但后来会随着生成物的浓度的减小,反应物浓度也减小,所以正反应速率减小,错误;b.适当升高温度,会使物质的分子能量增加,反应速率加快,正确;c.增大O2的浓度,会使反应速率大大加快,正确;d.选择高效催化剂,可以使化学反应速率大大加快,正确。
7.合成气(CO+H2)广泛用于合成有机物,工业上常采用天然气与水蒸气反应等方法来制取合成气。
(1)在150℃时2L的密闭容器中,将2molCH4和2molH2O(g)混合,经过15min达到平衡,此时CH4的转化率为60%。
回答下列问题:
①从反应开始至平衡,用氢气的变化量来表示该反应速率v(H2)=__。
②在该温度下,计算该反应的平衡常数K=__。
③下列选项中能表示该反应已达到平衡状态的是__。
A.v(H2)逆=3v(CO)正
B.密闭容器中混合气体的密度不变
C.密闭容器中总压强不变
D.C(CH4)=C(CO)
(2)合成气制甲醚的反应方程式为2CO(g)+4H2(g)
CH3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长春 备战 高考 化学 专题 复习 化学反应 速率 限度 练习题