质量不平衡转子系统发生碰摩后振动特性分析.docx
- 文档编号:28331328
- 上传时间:2023-07-10
- 格式:DOCX
- 页数:15
- 大小:232.70KB
质量不平衡转子系统发生碰摩后振动特性分析.docx
《质量不平衡转子系统发生碰摩后振动特性分析.docx》由会员分享,可在线阅读,更多相关《质量不平衡转子系统发生碰摩后振动特性分析.docx(15页珍藏版)》请在冰豆网上搜索。
质量不平衡转子系统发生碰摩后振动特性分析
VIBRATIONCHARACTERISTICSANALYSISOFTHE
RUB-IMPACTROTORSYSTEMWITHMASS
UNBALANCE
5JIAJiuhong,HANGTianqi
10
15
20(KeyLaboratoryofPressureSystemsandSafety,MinistryofEducation,EastChinaUniversityofScienceandTechnology,ShangHai200237)Abstract:
Inthispaper,vibrationcharacteristicsofarub-impactJeffcottrotorsystemexcitedbymassunbalanceincludingtheeccentricmassandtheinitialpermanentdeflectionareinvestigated.Throughthenumericalcalculation,rotatingspeeds,masseccentricities,initialpermanentdeflectionsandphaseanglesbetweentheeccentricmassdirectionandtherotorinitialpermanentdeflectiondirectionareusedascontrolparameterstoinvestigatetheireffectontherub-impactrotorsystemwiththehelpofbifurcationdiagrams,Poincaremaps,frequencyspectrumsandorbitmaps.Resultshowsthatthesetwokindsofmassunbalancehavegreatbutdifferenteffectonthedynamiccharacteristicoftherubbingrotorsystem.Differentmotioncharacteristicsappearwiththevaryingofthesecontrolparameters,andcomplicatedmotionssuchasperiodicandquasi-periodicvibrationsareobserved.Correspondingresultscanbeusedtodiagnosetherub-impactfaultanddecreasetheeffectofrubimpactintherotorsystemwithmassunbalance.Keywords:
Rub-impactrotorsystem;Massunbalance;Nonlinearmotion
0Introduction
Massunbalanceoftherotoristhemainfactortoincreasevibrationandbringunstable
characteristicstothewholerotorsystem[1-2].Sincetherotor-statorrubisoneofthemainfaultsforlargerotarymachines,ithasattractedgreatconcernandlotsofresearchworkhasbeendonebymanyresearchers.JunyiCao[3]investigatednonlineardynamiccharacteristicsofrub-impactrotorsystemwithfractionalorderdamping.Fromthestudy,variouscomplicateddynamicbehaviorsandtypesofroutestochaoswerefound,includingperioddoublingbifurcation,suddentransitionandquasi-periodicfromperiodicmotiontochaos.Jawaidi[4]investigateddynamicsofarigidrotorsupportedbyload-sharingbetweenmagneticandauxiliarybearingsforarangeofrealisticdesignandoperatingparameters.Manyphenomenawerefoundandstudied.WenmingZhang[5]carriedoutananalyticalinvestigationonthestabilityoftherubsolutionsoftherotorsysteminMEMS.Numericalcalculationdemonstratedthecomplexnonlinearmotionformsinthissystem.
Althoughmuchworkhasbeendonerespectivelyontheresearchofrotormassunbalanceand
rotor-statorrubbingimpact,thevibrationcharacteristicsofthiskindofrub-impactrotorswithmassunbalancehaverarelybeenstudiedspeciallyintheliterature.Duetomassunbalance’subiquity,greateffectonthevibrationoftherub-impactrotorsystemandrub’slargethreattothesafeoperationoftherotorsystem,Therefore,inthispaperattentionispaidtotheresearchofvibrationcharacteristicsofrub-impactrotorswithmassunbalance.First-orderheadline253035
1Physicalmodelandequations
40Rub-impactforcesIntheO-xycoordinatesystemare[6]:
Fx=−FNcosγ+FTsinγ=−(1−hr)Kr(x−μy)
(1)Fy=−FNsinγ−FTcosγ=−(1−hr)Kr(μx+y)
whenr Foundations: NewTeacherFundforDoctorStation,theMinistryofEducation(20090074120005). Briefauthorintroduction: JIAJiuhong,(1979-),Female,Associateprofessor,Mainresearch: Integrityofstructure.E-mail: jhjia@ -1- nondimensionalprocedure,thegoverningmotionequationsareasfollows: ˆ=rh<1.0,therubdoesn’thappen,andthenondimensionalmotionequationsare: WhenR 45 ˆ''+2ξxˆ'+xˆ=εω2cosωT+rˆ0cos(ωT+α0)x ˆ''+2ξyˆ'+yˆ=εω2sinωT+rˆ0sin(ωT+α0)y (2) ˆ=rh≥1.0,therubhappens,andthenondimensionalmotionequationsare: WhenR ˆ(1−Rˆ)(xˆ''+2ξxˆ'+xˆ+Kˆ−μyˆ)=εω2cosωT+rˆ0cos(ωT+α0)x (3) 2ˆˆˆ''+2ξyˆ'+yˆ+K(1−R)(μxˆ+yˆ)=εωsinωT+rˆ0sin(ωT+α0)y ˆ=KK,ξ= C2ωM,ω=thenaturalfrequencyofˆ=xh,yˆ=yh,KWhere: x r 00 50 ˆ0=r0h,T=ω0t,'=ddT.theshaft,ω=Ω0thefrequencyratio,ε=emh,r Sincethenondimensionalgoverningequationsofmotionhavebeengotabove,theyare &=f(u).Thenthefourth-ordertransferredintoasetoffirstorderdifferentialequationsu 55 Runge-Kuttamethodisusedtointegratethissetofequations.Accordingtotheanalysisneed, someparameterscanbeusedasthecontrolparameterssuchastherotorrotatingspeed,theinitialpermanentdeflectionandsoon,whileotherparameterskeepfixedduringeverytimeofcalculation.Togetthestableresult,asmallintegrationstephastobechosentoavoidthenumericaldivergenceatthepointwherederivativesofFxandFyarediscontinuous.Inthispaper,theintegrationstepischosentobe2π/500,i.e.,withinoneperiod,thereare500timesofintegralcalculation.Generally,longtimemarchingcomputationisrequiredtoobtainaconvergentorbit.Inthispaper,duringeverycalculation,resultsofthefirst500periodsareabandoned,andthenresultsofthenext100periodsaregottocarryoutvariouskindsofanalysis.Tostudythevibrationcharacteristicsoftherubbingrotorsystemwithmassunbalance,bifurcationdiagrams,Poincaremaps,frequencyspectrumsandorbitmapsareemployed.Theyareallusefulandeffectivewaystoillustratethemotionbehavioroftherotorsystem. 60 2Numericalsimulationofmotionsoftherotorsystem 65 2.1Effectofrotorrotatingspeeds Althoughmanyparameterssuchasthesystemdampingandthefrictionalcoefficientbetweentherotorandthestatorcanbeusedtoinvestigatethevibrationcharacteristicsoftherub-impactsystem,themostcommonandusefulparameterusedistherotorrotatingspeed.Thewholestartingprocesscanbeobservedbyusingtherotatingspeedtosimulatetherub-impactrotor ˆ 0070 -2- 00=/475 Fig.1Bifurcationdiagram 80 85 90 95 Fig.1.(a)isthebifurcationdiagramoftherub-impactrotor’svibrationwhichisexcitedonlybytheeccentricmass.Fig.1.(b)isthebifurcationdiagramoftherub-impactrotor’svibrationwhichisexcitedonlybytheinitialpermanentdeflection.Fig.1.(c)isthebifurcationdiagramofthevibrationexcitedbythesetwokindsofmassunbalancejointly.VeryclearlyfromFig.1,differentshapesofthreediagramsdemonstratethattheeccentricmassandtheinitialpermanentdeflectionhavedifferentinfluencetothevibrationoftherubbingrotorsystemandbothcontributealottothevibrationcharacteristicsoftherub-impactrotorsystem.AsshowninFig.1.(a),therub-impactmotionexcitedonlybytheeccentricmasskeepssynchronouswithperiod-oneforthewholecalculatingrotatingspeedrange.Fig.2showsthatonlyonepointiscorrespondinglyshowninthePoincaremap,onlyonepeakappearsinthefrequencyspectrum,andtheorbitoftherotorcenterisanellipse.Allthesefurtherdemonstratethemotionisperiod-onemotion.FromFig.1.(b),itcanbeseenthatwhentherotatingspeedratioisfrom0.0to1.1,themotionisperiod-one.From1.1to1.6,themotionisquasi-periodic,thenthemotiontransitstoperiod-onemotionagainforthehigherspeedratios.ThiscanbeseenfromFig.3.Itillustratestherubbingmotionexcitedonlybytheinitialpermanentdeflectionatω=1.2.ThePoincaremapisaclosedcircle,severalpeaksappearinthefrequencyspectrum,andtherotorcenterorbitisirregular.Theseprovethatthemotionisquasi-periodic. FromFig.1.(c),itcanbeseenthatwhentherotatingspeedratioisfrom0.0to1.1,themotionisperiod-one,from1.1to2.4,themotionisquasi-periodic,thenthemotiontransitstoperiod-onemotionagainforthehigherspeedratios.ThismotiontypeisclearlydifferentfromtheoneexcitedonlybytheeccentricmassinFig.1.(a)andtheoneexcitedonlybytheinitialpermanentdeflectioninFig.1.(b).Fig.4demonstratesthatthemotioninthiscaseatω=1.5isquasi-periodicasanalyzedabove. 100 Fig.2Motionexcitedbyε=0.2atω=1.5 -3- 105 ˆ0=0.8,α0=π/4atω=1.2 Fig.3Motionexcitedbyr 110 ˆ0atω=1.5Fig.4Motionexcitedjointlybyεandr 2.2Effectoftheeccentricmass Eccentricmassisoneofthemassunbalancetoexcitethemotionoftherotorsystem,soit’sessentialtostudyitseffectondynamiccharacteristicoftherub-impactrotorsystem.Fig.3arebifurcationdiagramsofrotor’svibrationatdifferentrotatingspeedsusingthemasseccentricityratioεasthecontrolparameter.Theinitialpermanentdeflectionisnotincludedinthisanalysisandissetas0.0. 115 120 Fig.5Bifurcationdiagramusingεasthecontrolparameter 125 Fig.6Motionwithε=0.3at ω=1.0 -4- 130 Fig.7Motionwithε=0.3at ω=1.5 135 140 AsshowninFig.5.(a),whentherotatingspeedratioisnothighlike1.0,themotionoftherub-impactrotorsystemkeepssynchronouswithperiod-oneforthewholecalculatingrange.FurtherdemonstrationisshowninFig.6withε=0.3atω=1.0thatonlyonepointiscorrespondinglyshowninthePoincaremap,onlyonepeakappearsinthefrequencyspectrum,andtheorbitoftherotorcenterisanellipse.Allthesefurtherdemonstratethemotionisperiod-onemotion. AsshowninFig.5.(b),atω=1.5whenthemasseccentricityratioεisfrom0.0to0.26,themotionisperiod-one.From0.26tohighervaluesofthemasseccentricityratio,themotionkeepsquasi-periodic.InFig.7withε=0.3atω=1.5,thePoincaremapisaclosedcircle,severalpeaksappearinthefrequencyspectrum,andtherotorcenterorbitisirregular.Theseprovethatthemotionisquasi-periodic. 2.3Effectoftheinitialpermanentdeflection Theinitialpermanentdeflectionisanotheroneofthemassunbalancetoexcitethemotionoftherotorsystem,it’salsoimportanttostudyitseffectondynamiccharacteri
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 质量 不平衡 转子 系统 发生 碰摩后 振动 特性 分析