届高考数学理科一轮复习考纲解读学案第1章 集合与常用逻辑用语 第1讲.docx
- 文档编号:2815563
- 上传时间:2022-11-15
- 格式:DOCX
- 页数:10
- 大小:221.09KB
届高考数学理科一轮复习考纲解读学案第1章 集合与常用逻辑用语 第1讲.docx
《届高考数学理科一轮复习考纲解读学案第1章 集合与常用逻辑用语 第1讲.docx》由会员分享,可在线阅读,更多相关《届高考数学理科一轮复习考纲解读学案第1章 集合与常用逻辑用语 第1讲.docx(10页珍藏版)》请在冰豆网上搜索。
届高考数学理科一轮复习考纲解读学案第1章集合与常用逻辑用语第1讲
第1讲 集合的概念与运算
[考纲解读] 1.了解集合的含义.体会元素与集合的关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述具体问题.
2.理解集合间的相等与包含关系,会求集合的子集,了解全集与空集的含义.(重点)
3.在理解集合间的交、并、补的含义的基础上,会求两个集合的并集与交集,会求给定子集的补集.(重点、难点)
4.能使用Venn图表达集合间的基本关系及基本运算.
[考向预测] 从近三年高考情况来看,本讲一直是高考中的热点.预测2020年高考会以考查集合交、并、补的运算为主,结合不等式的解法,求函数的定义域、值域等简单综合命题,试题难度不大,以选择题形式呈现.
1.集合与元素
(1)集合中元素的三个特征:
确定性、互异性、无序性.
(2)元素与集合的关系有属于或不属于两种,用符号∈或∉表示.
(3)集合的表示法:
列举法、描述法、图示法.
(4)常见数集的记法
集合
自然数集
正整数集
整数集
有理数集
实数集
符号
N
N*(或N+)
Z
Q
R
2.集合间的基本关系
3.集合的基本运算
4.集合的运算性质
(1)并集的性质:
A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.
(2)交集的性质:
A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.
(3)补集的性质:
A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∪B)=(∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
(4)若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n-1个,真子集有2n-1个,非空真子集的个数为2n-2个.
1.概念辨析
(1)若1∈{x,x2},则x=±1.( )
(2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( )
(3){x|x≥2}={t|t≥2}.( )
(4)对于任意两个集合A,B,总有(A∩B)⊆A,A⊆(A∪B).( )
答案
(1)×
(2)× (3)√ (4)√
2.小题热身
(1)若集合A={x|-2
A.{x|-2 C.{x|-1 答案 A 解析 A∩B={x|-2 (2)设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于( ) A.{1,4}B.{1,5}C.{2,5}D.{2,4} 答案 D 解析 ∵U={1,2,3,4,5},A∪B={1,3,5},∴∁U(A∪B)={2,4}. (3)已知集合A={1,3,},B={1,m},若B⊆A,则m=________. 答案 0或3 解析 ∵A={1,3,},B={1,m},B⊆A, ∴m=3或m=, ∴m=3或0或1,经检验m=0或3. (4)已知集合A=,B={0,x2},且A=B,则集合A的子集为________. 答案 ∅,{0},{4},{0,4} 解析 由题意得=x2,y=0,解得x=2, 所以A={0,4},其子集为∅,{0},{4},{0,4}. 题型 集合的基本概念 1.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a等于( ) A.B.C.0D.0或 答案 D 解析 当a=0时,A=,符合题意; 当a≠0时,Δ=(-3)2-4×a×2=0, 解得a=,此时A=,符合题意. 综上知a=0或. 2.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( ) A.9B.8C.5D.4 答案 A 解析 ∵x2+y2≤3,∴x2≤3,∵x∈Z,∴x=-1,0,1, 当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1,所以A中元素共有9个,故选A. 3.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________. 答案 0或1 解析 因为-3∈A,所以a-3=-3或2a-1=-3或a2-4=-3, 解得a=0或a=-1或a=1. 当a=0时,A={-3,-1,-4},符合题意; 当a=-1时,2a-1=a2-4=-3,不满足集合中元素的互异性,故舍去; 当a=1时,A={-2,1,-3},符合题意. 综上知a=0或1. 1.用描述法表示集合的两个关键点 (1)搞清楚集合中的代表元素是什么.如举例说明1,3是数,举例说明2是有序数对(或平面内的点). (2)看这些元素满足什么限制条件.如举例说明1,关于x的方程只有一个实根.举例说明2,x,y是整数且满足x2+y2≤3. 2.两个易错点 (1)忽视集合中元素的互异性.如举例说明3,求出a值后应注意检验. (2)忽视分类讨论.如举例说明1,要分a=0与a≠0两种情况讨论. 1.设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为( ) A.1B.2C.3D.4 答案 A 解析 若x∈B,则-x∈A,所以x只可能取0,-1,-2,-3.逐一检验可知B={-3},只有1个元素. 2.已知集合A={x|x=3k-1,k∈Z},则下列表示正确的是( ) A.-1∉AB.-11∈A C.3k2-1∈AD.-34∉A 答案 C 解析 令k=0得x=-1,故-1∈A; 令-11=3k-1,解得k=-∉Z,故-11∉A; 令-34=3k-1,解得k=-11∈Z,故-34∈A; 对于3k2-1,因为k∈Z时,k2∈Z, 所以3k2-1∈A.所以C项正确. 题型 集合间的基本关系 1.已知a,b∈R,若={a2,a+b,0},则a2018+b2018为( ) A.1B.0C.-1D.±1 答案 A 解析 ∵={a2,a+b,0},∴a≠0. ∴b=0,a2=1,又∵a≠1,∴a=-1,∴a2018+b2018=1. 2.已知集合M=,集合N=,则( ) A.MNB.NM C.M=ND.以上都不对 答案 A 解析 ∵+=π,k∈Z, -=π,k∈Z, ∴任取x∈M,有x∈N,且∈N,但∉M, ∴MN. 3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________. 答案 (-∞,3] 解析 因为B⊆A,所以①若B=∅,则2m-1 ②若B≠∅,则解得2≤m≤3. 由①②可得,符合题意的实数m的取值范围为m≤3. 条件探究1 举例说明3中的集合B改为“B={x|m≤x≤m+1}”,其余不变,该如何求解? 解 B={x|m≤x≤m+1}≠∅,为使B⊆A,m须满足解得-2≤m≤4. 条件探究2 举例说明3中的集合A改为“A={x|x<-2或x>5}”,如何求解? 解 因为B⊆A,所以①当B=∅时,即2m-1 ②当B≠∅时,或 解得或即m>4. 综上可知,实数m的取值范围为(-∞,2)∪(4,+∞). 1.判断集合间关系的三种方法 列举法 根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.如举例说明1 结构法 从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.如举例说明2 数轴法 在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.如举例说明3 2.根据集合间的关系求参数的策略 (1)注意对集合是否为空集进行分类讨论 因为∅⊆A对任意集合A都成立.如举例说明3中2m-1 (2)借助Venn图和数轴使抽象问题直观化. (3)注意检验区间端点值,如举例说明3,若将两个集合改为A={x|-2 1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0 A.B⊆AB.A=BC.ABD.BA 答案 C 解析 由题意得A={1,2},B={1,2,3,4},∴AB. 2.已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是( ) A.a≥2B.a>2C.a<0D.a≤0 答案 A 解析 ∵A={x|0≤x≤2},B={x|x≤a},∴为使A⊆B,a须满足a≥2. 3.满足{0,1,2}A⊆{0,1,2,3,4,5}的集合A的个数为________. 答案 7 解析 集合A除含元素0,1,2外,还至少含有3,4,5中的一个元素,所以集合A的个数等于{3,4,5}的非空子集的个数,即为23-1=7. 题型 集合的基本运算 角度1 集合的并、交、补运算 1.(2018·天津高考)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( ) A.{-1,1}B.{0,1} C.{-1,0,1}D.{2,3,4} 答案 C 解析 因为集合A={1,2,3,4},B={-1,0,2,3},A∪B={-1,0,1,2,3,4},所以(A∪B)∩C={-1,0,1}. 2.(2018·皖北协作区联考)已知集合A={y|y=},B={x|y=lg(x-2x2)},则∁R(A∩B)=( ) A.B.(-∞,0)∪ C.D.(-∞,0]∪ 答案 D 解析 因为A={y|y=}=[0,+∞),B={x|y=lg(x-2x2)}=,所以A∩B=,所以∁R(A∩B)=(-∞,0]∪. 角度2 知集合的运算结果求参数 3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁UA)∩B=∅,则m=________. 答案 1或2 解析 A={-2,-1},由(∁UA)∩B=∅,得B⊆A. x2+(m+1)x+m=0可化为(x+1)(x+m)=0, 当m=1时,B={-1},符合题意; 当m≠1时,B={-1,-m},为使B⊆A成立,须有-m=-2,即m=2. 综上知m=1或2. 1.求集合交集、并集或补集的步骤 2.知集合的运算结果求参数问题的两个关键点 (1)分析运算结果并进行恰当转换. 如举例说明3中,由(∁UA)∩B=∅,知B⊆A. (2)化简集合为求参数创造有利条件. 如举例说明3中,A={-2,-1}.当m=1时,B={-1};当m≠1时,B={-1,-m}. 1.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分(如图)表示的集合是( ) A.[-1,1) B.(-3,1] C.(-∞,-3)∪[-1,+∞) D.(-3,-1) 答案 D 解析 由题意可知,M=(-3,1),N=[-1,1],所以阴影部分表示的集合为M∩(∁UN)=(-3,-1). 2.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁RA=( ) A.{x|-1 C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2} 答案 B 解析 解不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 届高考数学理科一轮复习考纲解读学案第1章 集合与常用逻辑用语 第1讲 高考 数学 理科 一轮 复习 解读 学案第 集合 常用 逻辑 用语