FractalGeometry.docx
- 文档编号:27992956
- 上传时间:2023-07-07
- 格式:DOCX
- 页数:12
- 大小:223.80KB
FractalGeometry.docx
《FractalGeometry.docx》由会员分享,可在线阅读,更多相关《FractalGeometry.docx(12页珍藏版)》请在冰豆网上搜索。
FractalGeometry
Fractals:
UsefulBeauty
(GeneralIntroductiontoFractalGeometry)
ReturntoindexBBM
"Cloudsarenotspheres,mountainsarenotcones,coastlinesarenotcircles,andbarkisnotsmooth,nordoeslightningtravelinastraightline."
BenoitMandelbrot
EdytaPatrzalek,StanAckermansInstitute,
IPO,CentreforUser-SystemInteraction,EindhovenUniversityofTechnology
Abstract
Fractalsisanewbranchofmathematicsandart.Perhapsthisisthereasonwhymostpeoplerecognizefractalsonlyasprettypicturesusefulasbackgroundsonthecomputerscreenororiginalpostcardpatterns.Butwhataretheyreally?
MostphysicalsystemsofnatureandmanyhumanartifactsarenotregulargeometricshapesofthestandardgeometryderivedfromEuclid.Fractalgeometryoffersalmostunlimitedwaysofdescribing,measuringandpredictingthesenaturalphenomena.Butisitpossibletodefinethewholeworldusingmathematicalequations?
Thisarticledescribeshowthefourmostfamousfractalswerecreatedandexplainsthemostimportantfractalproperties,whichmakefractalsusefulfordifferentdomainofscience.
Introduction
Manypeoplearefascinatedbythebeautifulimagestermedfractals.Extendingbeyondthetypicalperceptionofmathematicsasabodyofcomplicated,boringformulas,fractalgeometrymixesartwithmathematicstodemonstratethatequationsaremorethanjustacollectionofnumbers.Whatmakesfractalsevenmoreinterestingisthattheyarethebestexistingmathematicaldescriptions
ofmanynaturalforms,suchascoastlines,mountainsorpartsoflivingorganisms.
Althoughfractalgeometryiscloselyconnectedwithcomputertechniques,somepeoplehadworkedonfractalslongbeforetheinventionofcomputers.ThosepeoplewereBritishcartographers,whoencounteredtheprobleminmeasuringthelengthofBritaincoast.Thecoastlinemeasuredonalargescalemapwasapproximatelyhalfthelengthofcoastlinemeasuredonadetailedmap.Theclosertheylooked,themoredetailedandlongerthecoastlinebecame.Theydidnotrealizethattheyhaddiscoveredoneofthemainpropertiesoffractals.
Fractals’properties
Twoofthemostimportantpropertiesoffractalsareself-similarityandnon-integerdimension.
Whatdoesself-similaritymean?
Ifyoulookcarefullyatafernleaf,youwillnoticethateverylittleleaf-partofthebiggerone-hasthesameshapeasthewholefernleaf.Youcansaythatthefernleafisself-similar.Thesameiswithfractals:
youcanmagnifythemmanytimesandaftereverystepyouwillseethesameshape,whichischaracteristicofthatparticularfractal.
Thenon-integerdimensionismoredifficulttoexplain.Classicalgeometrydealswithobjectsofintegerdimensions:
zerodimensionalpoints,onedimensionallinesandcurves,twodimensionalplanefiguressuchassquaresandcircles,andthreedimensionalsolidssuchascubesandspheres.However,manynaturalphenomenaarebetterdescribedusingadimensionbetweentwowholenumbers.Sowhileastraightlinehasadimensionofone,afractalcurvewillhaveadimensionbetweenoneandtwo,dependingonhowmuchspaceittakesupasittwistsandcurves.Themoretheflatfractalfillsaplane,thecloseritapproachestwodimensions.Likewise,a"hillyfractalscene"willreachadimensionsomewherebetweentwoandthree.Soafractallandscapemadeupofalargehillcoveredwithtinymoundswouldbeclosetotheseconddimension,whilearoughsurfacecomposedofmanymedium-sizedhillswouldbeclosetothethirddimension.
Therearealotofdifferenttypesoffractals.InthispaperIwillpresenttwoofthemostpopulartypes:
complexnumberfractalsandIteratedFunctionSystem(IFS)fractals.
Complexnumberfractals
Beforedescribingthistypeoffractal,Idecidedtoexplainbrieflythetheoryofcomplexnumbers.
Acomplexnumberconsistsofarealnumberaddedtoanimaginarynumber.Itiscommontorefertoacomplexnumberasa"point"onthecomplexplane.Ifthecomplexnumberis
thecoordinatesofthepointarea(horizontal-realaxis)andb(vertical-imaginaryaxis).
Theunitofimaginarynumbers:
.
TwoleadingresearchersinthefieldofcomplexnumberfractalsareGastonMauriceJuliaandBenoitMandelbrot.
GastonMauriceJuliawasbornattheendof19thcenturyinAlgeria.Hespenthislifestudyingtheiterationofpolynomialsandrationalfunctions.Aroundthe1920s,afterpublishinghispaperontheiterationofarationalfunction,Juliabecamefamous.However,afterhisdeath,hewasforgotten.
Inthe1970s,theworkofGastonMauriceJuliawasrevivedandpopularizedbythePolish-bornBenoitMandelbrot.InspiredbyJulia’swork,andwiththeaidofcomputergraphics,IBMemployeeMandelbrotwasabletoshowthefirstpicturesofthemostbeautifulfractalsknowntoday.
Mandelbrotset
TheMandelbrotsetisthesetofpointsonacomplexplain.TobuildtheMandelbrotset,wehavetouseanalgorithmbasedontherecursiveformula:
separatingthepointsofthecomplexplaneintotwocategories:
∙pointsinsidetheMandelbrotset,
∙pointsoutsidetheMandelbrotset.
Theimagebelowshowsaportionofthecomplexplane.ThepointsoftheMandelbrotsethavebeencoloredblack.
ItisalsopossibletoassignacolortothepointsoutsidetheMandelbrotset.TheircolorsdependonhowmanyiterationshavebeenrequiredtodeterminethattheyareoutsidetheMandelbrotset.
HowistheMandelbrotsetcreated?
TocreatetheMandelbrotsetwehavetopickapoint(C)onthecomplexplane.Thecomplexnumbercorrespondingwiththispointhastheform:
Aftercalculatingthevalueofpreviousexpression:
usingzeroasthevalueof
weobtainCastheresult.Thenextstepconsistsofassigningtheresultto
andrepeatingthecalculation:
nowtheresultisthecomplexnumber
.Thenwehavetoassignthevalueto
andrepeattheprocessagainandagain.
Thisprocesscanberepresentedasthe"migration"oftheinitialpointCacrosstheplane.Whathappenstothepointwhenwerepeatedlyiteratethefunction?
Willitremainneartotheoriginorwillitgoawayfromit,increasingitsdistancefromtheoriginwithoutlimit?
Inthefirstcase,wesaythatCbelongstotheMandelbrotset(itisoneoftheblackpointsintheimage);otherwise,wesaythatitgoestoinfinityandweassignacolortoCdependingonthespeedatwhichthepoint"escapes"fromtheorigin.
Wecantakealookatthealgorithmfromadifferentpointofview.Letusimaginethatallthepointsontheplaneareattractedbyboth:
infinityandtheMandelbrotset.Thatmakesiteasytounderstandwhy:
∙pointsfarfromtheMandelbrotsetrapidlymovetowardsinfinity,
∙pointsclosetotheMandelbrotsetslowlyescapetoinfinity,
∙pointsinsidetheMandelbrotsetneverescapetoinfinity.
Juliasets
JuliasetsarestrictlyconnectedwiththeMandelbrotset.TheiterativefunctionthatisusedtoproducethemisthesameasfortheMandelbrotset.Theonlydifferenceisthewaythisformulaisused.InordertodrawapictureoftheMandelbrotset,weiteratetheformulaforeachpointCofthecomplexplane,alwaysstartingwith
.IfwewanttomakeapictureofaJuliaset,Cmustbeconstantduringthewholegenerationprocess,whilethevalueof
varies.ThevalueofCdeterminestheshapeoftheJuliaset;inotherwords,eachpointofthecomplexplaneisassociatedwithaparticularJuliaset.
HowisaJuliasetcreated?
WehavetopickapointC)onthecomplexplane.ThefollowingalgorithmdetermineswhetherornotapointoncomplexplaneZ)belongstotheJuliasetassociatedwithC,anddeterminesthecolorthatshouldbeassignedtoit.ToseeifZbelongstotheset,wehavetoiteratethefunction
using
.WhathappenstotheinitialpointZwhentheformulaisiterated?
Willitremainneartotheoriginorwillitgoawayfromit,increasingitsdistancefromtheoriginwithoutlimit?
Inthefirstcase,itbelongstotheJuliaset;otherwiseitgoestoinfinityandweassignacolortoZdependingonthespeedthepoint"escapes"fromtheorigin.ToproduceanimageofthewholeJuliasetassociatedwithC,wemustrepeatthisprocessforallthepointsZwhosecoordinatesareincludedinthisrange:
;
ThemostimportantrelationshipbetweenJuliasetsandMandelbrotsetisthatwhiletheMandelbrotsetisconnected(itisasinglepiece),aJuliasetisconnectedonlyifitisassociatedwithapointinsidetheMandelbrotset.Forexample:
theJuliasetassociatedwith
isconnected;theJuliasetassociatedwith
isnotconnected(seepicturebelow).
IteratedFunctionSystemFractals
IteratedFunctionSystem(IFS)fractalsarecreatedonthebasisofsimpleplanetransformations:
scaling,dislocationandtheplaneaxesrotation.CreatinganIFSfractalconsistsoffollowingsteps:
1.definingasetofplanetransformations,
2.drawinganinitialpatternontheplane(anypattern),
3.transformingtheinitialpatternusingthetransformationsdefinedinfirststep,
4.transformingthenewpicture(combinationofinitialandtransformedpatterns)usingthesamesetoftransformations,
5.repeatingthefourthstepasmanytimesaspossible(intheory,thisprocedurecanberepeatedaninfinitenumberoftimes).
ThemostfamousISFfractalsaretheSierpinskiTriangleandtheKochSnowflake.
SierpinskiTriangle
Thisisthefractalwecangetbytakingthemidpointsofeachsideofanequilateraltriangleandconnectingthem.Theiterationsshouldberepeatedaninfinitenumberoftimes.ThepicturesbelowpresentfourinitialstepsoftheconstructionoftheSierpinskiTriangle:
1)
2)
3)
4)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- FractalGeometry