生物会考2.docx
- 文档编号:27939988
- 上传时间:2023-07-06
- 格式:DOCX
- 页数:22
- 大小:1.84MB
生物会考2.docx
《生物会考2.docx》由会员分享,可在线阅读,更多相关《生物会考2.docx(22页珍藏版)》请在冰豆网上搜索。
生物会考2
第一章遗传因子的发现
第1、2节孟德尔的豌豆杂交实验
豌豆自花传粉、闭花受粉
性状:
生物体所表现出来的的形态特征、生理生化特征或行为方式等。
基因:
控制性状的遗传因子(DNA分子上有遗传效应的片段P67)
等位基因:
决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。
分离定律
在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
解释
①性状由遗传因子决定。
(区分大小写)②因子成对存在。
③配子只含每对因子中的一个。
④配子的结合是随机的。
基因分离定律的实质:
在减数分裂形成配子过程中,等位基因随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代
自由组合定律
控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合
基因自由组合定律的实质:
在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
孟德尔实验成功的原因:
(1)正确选用实验材料:
㈠豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种具有易于区分的性状
(2)由一对相对性状到多对相对性状的研究(从简单到复杂)
(3)对实验结果进行统计学分析(4)严谨的科学设计实验程序:
假说-------演绎法
基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
表现型=基因型+环境条件。
孟德尔遗传学之父
第二章基因和染色体的关系
体现在
依据:
基因与染色体行为的平行关系减数分裂与受精作用
基因在染色体上证据:
果蝇杂交(白眼)伴性遗传:
色盲与抗VD佝偻病
现代解释:
遗传因子为一对同源染色体上的一对等位基因
第一节减数分裂
减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。
在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。
(注:
体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。
)
精子的形成过程:
精巢(哺乳动物称睾丸)
●减数第一次分裂
间期:
染色体复制(包括DNA复制和蛋白质的合成)。
前期:
同源染色体两两配对(称联会),形成四分体。
四分体中的非姐妹染色单体之间常常交叉互换。
中期:
同源染色体成对排列在赤道板上(两侧)。
后期:
同源染色体分离;非同源染色体自由组合。
末期:
细胞质分裂,形成2个子细胞。
●减数第二次分裂(无同源染色体)
前期:
染色体排列散乱。
中期:
每条染色体的着丝粒都排列在细胞中央的赤道板上。
后期:
姐妹染色单体分开,成为两条子染色体。
并分别移向细胞两极。
末期:
细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。
减数1分裂前的间期看不到每条染色体上的姐妹染色单体(显微镜)
同源染色体
AaBb①形状(着丝点位置)和大小(长度)相同,分别来自父方与母方的
②一对同源染色体是一个四分体,含有两条染色体,四条染色单体
③区别:
同源与非同源染色体;姐妹与非姐妹染色单体
④交叉互换
卵细胞的形成过程:
卵巢
精原细胞和卵原细胞
的染色体数目与体细胞相同。
因此,它们属于体细胞,通过有丝分裂的方式增殖,但它们又可以进行减数分裂形成生殖细胞。
减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。
所以减数第二次分裂过程中无同源染色体。
减数分裂过程中染色体和DNA的变化规律
受精作用的特点和意义
意义:
减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。
第二节基因在染色体上
萨顿假说:
基因和染色体行为存在明显的平行关系。
萨顿假说推论方法——类比推理
1.内容:
基因在染色体上(染色体是基因的载体)
2.依据:
基因与染色体行为存在着明显的平行关系。
①在杂交中保持完整和独立性②成对存在
③一个来自父方,一个来自母方④形成配子时自由组合
3.证据:
果蝇的限性遗传
红眼XWXWX白眼XwY
XWY红眼XWXw
红眼XWXW:
红眼XWXw:
红眼XWY:
白眼XwY
①一条染色体上有许多个基因;②基因在染色体上呈线性排列。
现代解释孟德尔遗传定律
①分离定律:
等位基因随同源染色体的分开独立地遗传给后代。
②自由组合定律:
非同源染色体上的非等位基因自由组合。
第3节伴性遗传
口诀:
无中生有为隐性,隐性遗传看女病。
父子患病为伴性。
有中生无为显性,显性遗传看男病。
母女患病为伴性。
遗传病的遗传方式
遗传特点
实例
常染色体隐性遗传病
隔代遗传,患者为隐性纯合体
白化病、苯丙酮尿症、
常染色体显性遗传病
代代相传,正常人为隐性纯合体
多/并指、软骨发育不全
伴X染色体隐性遗传病
隔代遗传,交叉遗传,患者男性多于女性
色盲、血友病
伴X染色体显性遗传病
代代相传,交叉遗传,患者女性多于男性
抗VD佝偻病
伴Y染色体遗传病
传男不传女,只有男性患者没有女性患者
人类中的毛耳
三种伴性遗传的特点:
(1)伴X隐性遗传的特点:
①男>女②隔代遗传(交叉遗传)③母病子必病,女病父必病
(2)伴X显性遗传的特点:
①女>男②连续发病③父病女必病,子病母必病
(3)伴Y遗传的特点:
①男病女不病②父→子→孙
附:
常见遗传病类型(要记住):
伴X隐:
色盲、血友病
伴X显:
抗维生素D佝偻病
常隐:
先天性聋哑、白化病
常显:
多(并)指
第三章基因的本质
第一节DNA是主要的遗传物质
肺炎双球菌转化实验
(1)体内转化1928年英国格里菲思
①活R,无毒活小鼠
②活S,有毒小鼠死小鼠;分离出活S
③△杀死的S,无毒活小鼠
④活R+△杀死的S,无毒死小鼠;分离出活S
转化因子是什么?
(2)体外转化1944年美国艾弗里
多糖或蛋白质R型
活SDNA+R型培养基R型+S型
DNA水解物R型
转化因子是DNA。
噬菌体侵染细菌实验1952年赫尔希、蔡明电镜观察和同位素示踪
32P标记DNADNA具有连续性,是遗传物质。
35S标记蛋白质
烟草花叶病毒实验RNA也是遗传物质。
第二节DNA分子的结构
DNA的组成元素:
C、H、O、N、P
DNA的基本单位:
脱氧核糖核苷酸(4种)
DNA的结构:
①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。
②外侧:
脱氧核糖和磷酸交替连接构成基本骨架。
内侧:
由氢键相连的碱基对组成。
③碱基配对有一定规律:
A=T;G≡C。
(碱基互补配对原则)
第三节DNA的复制
实验证据——半保留复制
材料:
大肠杆菌
方法:
同位素示踪法
场所:
细胞核
时间:
细胞分裂间期。
(即有丝分裂的间期和减数第一次分裂的间期)
基本条件:
①模板:
开始解旋的DNA分子的两条单链(即亲代DNA的两条链);
②原料:
是游离在细胞中的4种脱氧核苷酸;
③能量:
由ATP提供;
④酶:
DNA解旋酶、DNA聚合酶等。
过程:
解旋;
合成子链;
形成子代DNA
特点:
边解旋边复制;
半保留复制
原则:
碱基互补配对原则
意义:
将遗传信息从亲代传给子代,从而保持遗传信息的连续性
第四节基因是有遗传效应的DNA片段
基因的定义:
基因是有遗传效应的DNA片段
DNA分子的特点:
多样性、特异性和稳定性。
第四章基因的表达
第一节基因指导蛋白质的合成
有遗传效应控制mRNA蛋白质
的DNA片段基蛋白质结构性状影响环境
是控制生物因酶的合成控制代谢
的基本单位中心法则
RNA的结构:
1、组成元素:
C、H、O、N、P
2、基本单位:
核糖核苷酸(4种)
3、结构:
一般为单链
基因:
是具有遗传效应的DNA片段。
主要在染色体上
基因控制蛋白质合成:
1、转录:
(1)概念:
在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
(注:
叶绿体、线粒体也有转录)
(2)过程:
解旋;
配对;
连接;
释放(具体看书63页)
(3)条件:
模板:
DNA的一条链(模板链)
原料:
4种核糖核苷酸
能量:
ATP
酶:
解旋酶、RNA聚合酶等
(4)原则:
碱基互补配对原则(A—U、T—A、G—C、C—G)
(5)产物:
信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)
2、翻译:
(1)概念:
游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。
(注:
叶绿体、线粒体也有翻译)
(2)过程:
(看书)
(3)条件:
模板:
mRNA
原料:
氨基酸(20种)
能量:
ATP
酶:
多种酶
搬运工具:
tRNA
装配机器:
核糖体
(4)原则:
碱基互补配对原则
(5)产物:
多肽链
基因、蛋白质和性状的关系
(1)基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状,如白化病等。
(2)基因还能通过控制蛋白质的结构直接控制生物体的性状,如镰刀型细胞贫血等。
第五章基因突变及其他变异
第一节基因突变和基因重组
●不可遗传的变异(仅由环境变化引起)
●可遗传的变异(由遗传物质的变化引起)
不可遗传的
变异基因突变物、化、生诱变育种
可遗传的基因重组杂交育种
染色体变异多倍体、单倍体育种
一、基因突变
1.定义:
DNA分子中发生碱基对的替换、增添和缺失而引起的基因结构的改变。
2.时间:
有丝分裂间期或减数第一次分裂间期的DNA复制时
3.外因:
物理、化学、生物因素内因:
可变性
4.特点:
①普遍性②随机,无方向性③频率低④有害性
5.意义:
①产生新基因②变异的根本来源③进化的原始材料
6.实例:
镰刀型细胞贫血
二、基因重组
1.在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。
2.时间:
减数第一次分裂前期或后期
2.意义:
①产生新的基因型②生物变异的来源之一③对进化有意义
三、染色体变异
1.缺失1917年猫叫综合症果蝇的缺刻翅
结构的变异重复1919年果蝇的棒状翅
易位1923年慢性粒细胞白血病
数目结构的变异:
个别染色体;染色体组的增加与减少
2.染色体组
细胞中的一组非同源染色体,在形态和功能上各不相同,携带着控制生物生长发育、遗传和变异的全部遗传信息的染色体。
如:
人的为22常+X或22常+Y
△染色体组型(核型),是指某一种生物体细胞种全部染色体的数目、大小和形态特征;如:
人的核型:
46、XX或XY
第二节染色体变异
染色体结构变异:
实例:
猫叫综合征(5号染色体部分缺失)
类型:
缺失、重复、倒位、易位
类型
●个别染色体增加或减少:
实例:
21三体综合征(多1条21号染色体)
●以染色体组的形式成倍增加或减少:
实例:
三倍体无子西瓜
染色体组
概念:
二倍体生物配子中所具有的全部染色体组成一个染色体组。
染色体组数的判断:
①染色体组数=细胞中形态相同的染色体有几条,则含几个染色体组
②染色体组数=基因型中控制同一性状的基因个数
二倍体人果蝇
三倍体香蕉
四倍体马铃薯
动物多为二倍体,植物多为多倍体
多倍体育种:
方法:
用秋水仙素处理萌发的种子或幼苗。
(原理:
能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)原理:
染色体变异
实例:
三倍体无子西瓜的培育;
优缺点:
培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。
单倍体育种:
方法:
花粉(药)离体培养
原理:
染色体变异
实例:
矮杆抗病水稻的培育
诱变育种
杂交育种
多倍体育种
单倍体育种
方法
用射线、激光、化学药品等处理生物
杂交
用秋水仙素处理萌发的种子或幼苗
花药(粉)离体培养
原理
基因突变
基因重组
染色体变异
染色体变异
优缺点
加速育种进程,大幅度地改良某些性状,但有利变异个体少。
方法简便,但要较长年限选择才可获得纯合子。
器官较大,营养物质含量高,但结实率低,成熟迟。
后代都是纯合子,明显缩短育种年限,但技术较复杂。
第三节人类遗传病
显性遗传病伴X显:
抗维生素D佝偻病
常显:
多指、并指、软骨发育不全
隐性遗传病伴X隐:
色盲、血友病
常隐:
先天性聋哑、白化病、镰刀型细胞贫血症、黑尿症、苯丙酮尿症
多基因遗传病
常见类型:
腭裂、无脑儿、原发性高血压、青少年型糖尿病等。
染色体异常遗传病(简称染色体病)
类型:
常染色体遗传病结构异常:
猫叫综合征
数目异常:
21三体综合征(先天智力障碍)
性染色体遗传病:
性腺发育不全综合征(XO型,患者缺少一条X染色体)
人类基因组计划(HGP):
人体DNA所携带的全部遗传信息
①提出:
1986年美国的生物学家杜尔贝利
②主要内容:
绘制人类基因组四张图:
遗传图、物理图、序列图、转录图
③1990年10月启动
④1999年7月中国参与,解读3号染色体短臂上3000万个碱基,占1%。
⑤2000年6月20日,初步完成工作草图
⑥2001年2月,草图公开发表⑥2003年圆满完成
产前诊断:
胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病,
产前诊断可以大大降低病儿的出生率
遗传咨询:
在一定的程度上能够有效的预防遗传病的产生和发展
第六章从杂交育种到基因工程
第一节杂交育种与诱变育种
杂交育种
诱变育种
多倍体育种
单倍体育种
处理
杂交→自交→选优→自交
用射线、激光、
化学药物处理
用秋水仙素处理
萌发后的种子或幼苗
花药离体培养
原理
基因重组,
组合优良性状
人工诱发基因
突变
破坏纺锤体的形成,
使染色体数目加倍
诱导花粉直接发育,
再用秋水仙素
优
缺
点
方法简单,
可预见强,
但周期长
加速育种,改良性状,但有利个体不多,需大量处理
器官大,营养物质
含量高,但发育延迟,结实率低
缩短育种年限,
但方法复杂,
成活率较低
例子
水稻的育种
高产量青霉素菌株
无子西瓜
抗病植株的育成
第2节基因工程及其应用
基因工程
原理:
基因重组
结果:
定向地改造生物的遗传性状,获得人类所需要的品种。
基因工程的工具
1、基因的“剪刀”—限制性核酸内切酶(简称限制酶)
(1)特点:
具有专一性和特异性,即识别特定核苷酸序列,切割特定切点。
(2)作用部位:
磷酸二酯键
(4)例子:
EcoRI限制酶能专一识别GAATTC序列,并在G和A之间将这段序列切开。
(黏性末端)(黏性末端)
(5)切割结果:
产生2个带有黏性末端的DNA片断。
(6)作用:
基因工程中重要的切割工具,能将外来的DNA切断,对自己的DNA无损害。
注:
黏性末端即指被限制酶切割后露出的碱基能互补配对。
2、基因的“针线”——DNA连接酶
(1)作用:
将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。
(2)连接部位:
磷酸二酯键
3、基因的运载体
(1)定义:
能将外源基因送入细胞的工具就是运载体。
(2)种类:
质粒、噬菌体和动植物病毒。
基因工程的操作步骤
1、提取目的基因
2、目的基因与运载体结合
3、将目的基因导入受体细胞
4、目的基因的检测和鉴定
基因工程的应用
1、基因工程与作物育种:
转基因抗虫棉、耐贮存番茄、耐盐碱棉花、抗除草作物、转基因奶牛、超级绵羊等等
2、基因工程与药物研制:
干扰素、白细胞介素、溶血栓剂、凝血因子、疫苗
3、基因工程与环境保护:
超级细菌
第七章现代生物进化理论
第一节现代生物进化理论的由来
△生物进化是指同种生物的发展变化,时间可长可短,性状变化程度不一,任何基因频率的改变,不论其变化大小如何,都属进化的范围,
△物种的形成必须是当基因频率的改变在突破种的界限形成生殖隔离时,方可成立。
现代进化理论的由来
神创论+物种不变论(上帝造物说)
法国拉马克1809年《动物哲学》拉马克的进化学说
①生物由古老生物进化而来的②由低等到高等逐渐进化的
意义:
能科学地解释生物进化的原因,生物多样性和适应性,但不能解释遗传变异的本质及自然选择对可遗传变异的作用。
③生物各种适应性特征的形成是由于用进废退与获得性遗传
1、理论要点:
用进废退;获得性遗传
2、进步性:
认为生物是进化的。
第一个提出较完整的进化学说——拉马克
达尔文的自然选择学说英国达尔文1859年《物种起源》自然选择学说
1、理论要点:
自然选择(过度繁殖→生存斗争→遗传和变异→适者生存)
2、进步性:
能够科学地解释生物进化的原因以及生物的多样性和适应性。
3、局限性:
①不能科学地解释遗传和变异的本质;
②自然选择对可遗传的变异如何起作用不能作出科学的解释。
(对生物进化的解释仅局限于个体水平)
达尔文提出自然选择学说并以长颈鹿为例
第二节现代生物进化理论的主要内容
现代进化理论:
以自然选择学说为核心内容
现代达尔文主义
种群是生物进化的基本单位(生物进化的实质:
种群基因频率的改变)
1、种群:
概念:
在一定时间内占据一定空间的同种生物的所有个体称为种群。
特点:
不仅是生物繁殖的基本单位;而且是生物进化的基本单位。
2、种群基因库:
一个种群的全部个体所含有的全部基因构成了该种群的基因库
自然选择决定进化方向:
在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
隔离:
地理隔离:
同一种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生基因交流的现象。
生殖隔离:
指不同种群的个体不能自由交配或交配后产生不可育的后代。
物种的形成:
⑴物种形成的常见方式:
地理隔离(长期)→生殖隔离
⑵物种形成的标志:
生殖隔离
⑶物种形成的3个环节:
●突变和基因重组:
为生物进化提供原材料
●选择:
使种群的基因频率定向改变
隔离:
是新物种形成的必要条件
突变和基因重组、选择和隔离是物种形成机制
生物多样性与生物进化的关系是:
生物多样性产生的原因是生物不断进化的结果;而生物多样性的产生又加速了生物的进化
生物多样性包括:
遗传(基因)多样性、物种多样性和生态系统多样性三个层次。
进化的实质基因频率发生改变
自然选择定向变异不定向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物 会考