直线和圆427.docx
- 文档编号:27878983
- 上传时间:2023-07-05
- 格式:DOCX
- 页数:18
- 大小:141.68KB
直线和圆427.docx
《直线和圆427.docx》由会员分享,可在线阅读,更多相关《直线和圆427.docx(18页珍藏版)》请在冰豆网上搜索。
直线和圆427
圆中作辅助线的常用方法:
(1)作弦心距,以便利用弦心距与弧、弦之间的关系与垂径定理。
(2)若题目中有“弦的中点”和“弧的中点”条件时,一般连接中点和圆心,利用垂径定理的推论得出结果。
(3)若题目中有“直径”这一条件,可适当选取圆周上的点,连结此点与直径端点得到90度的角或直角三角形。
(4)连结同弧或等弧的圆周角、圆心角,以得到等角。
(5)若题中有与半径(或直径)垂直的线段,如图1,圆O中,BD⊥OA于D,经常是:
①如图1(上)延长BD交圆于C,利用垂径定理。
②如图1(下)延长AO交圆于E,连结BE,BA,得Rt△ABE。
图1(上)图1(下)
(6)若题目中有“切线”条件时,一般是:
对切线引过切点的半径,
(7)若题目中有“两圆相切”(内切或外切),往往过切点作两圆的切线或作出它们的连心线(连心线过切点)以沟通两圆中有关的角的相等关系。
(8)若题目中有“两圆相交”的条件,经常作两圆的公共弦,使之得到同弧上的圆周角或构成圆内接四边形解决,有时还引两连心线以得到结果。
(9)有些问题可以先证明四点共圆,借助于辅助圆中角之间的等量关系去证明。
(10)对于圆的内接正多边形的问题,往往添作边心距,抓住一个直角三角形去解决。
1、(2011•湖州)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.
(1)求OE和CD的长;
(2)求图中阴影部队的面积.
2、(2011•衡阳)如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.
3、(2011•贵阳)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.
(1)圆心O到CD的距离是 _________ .
(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)
4、(2011•抚顺)如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.
(1)求证:
CF为⊙O的切线.
(2)若半径ON⊥AD于点M,CE=,求图中阴影部分的面积.
5、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=
∠CAB.
(1)求证:
直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=
,求BC和BF的长
6、(2010•义乌市)如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=
,BC=2
.
(1)求∠A的度数;
(2)求证:
BC是⊙O的切线;
(3)求MD的长度.
7、(2010•沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:
∠CDE=2∠B;
(2)若BD:
AB=
:
2,求⊙O的半径及DF的长.
8、(2010•绍兴)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是狐AB的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:
EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
9、(2010•丽水)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,cos
OBH=4/5.
(1)求⊙O的半径;
(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?
请说明理由.
1、(2011•湖州)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.
(1)求OE和CD的长;
(2)求图中阴影部队的面积.
考点:
扇形面积的计算;垂径定理。
分析:
(1)在△OCE中,利用三角函数即可求得CE,OE的长,再根据垂径定理即可求得CD的长;
(2)根据半圆的面积减去△ABC的面积,即可求解.
解答:
解:
(1)在△OCE中,
∵∠CEO=90°,∠EOC=60°,OC=2,
∴OE=1/2OC=1,∴CE=
OC=
,∵OA⊥CD,∴CE=DE,∴CD=2
;
(2)∵S△ABC=
AB•EC=
×4×
=2
,
=π*2—2
点评:
本题主要考查了垂径定理以及三角函数,一些不规则的图形的面积可以转化为规则图形的面积的和或差求解.
2、(2011•衡阳)如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.
考点:
切线的判定与性质;勾股定理;垂径定理;圆周角定理。
专题:
综合题。
分析:
(1)连接OC,证明OC⊥DC,利用经过半径的外端且垂直于半径的直线是圆的切线判定切线即可;
(2)利用等弧所对的圆心角相等和题目中的已知角得到∠D=30°,利用解直角三角形求得CD的长即可.
解答:
解:
(1)CD与⊙O相切;
证明:
连接OC,
∵CA=CB,∴弧AC=弧BC;∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,
∴CD与⊙O相切.
(2)∵CA=CB,∠ACB=120°,∴∠DOC=60°∴∠D=30°,∵OA=2,∴OC=2
∴CD==2
点评:
本题考查常见的几何题型,包括切线的判定,角的大小及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
3、(2011•贵阳)在▱ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.
(1)圆心O到CD的距离是 5 .
(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)
考点:
切线的性质;平行四边形的性质;扇形面积的计算。
分析:
(1)连接OE,则OE的长就是所求的量;
(2)阴影部分的面积等于梯形OADE的面积与扇形OAE的面积的差.
解答:
解
(1)连接OE.
∵边CD切⊙O于点E.
∴OE⊥CD
则OE就是圆心O到CD的距离,则圆心O到CD的距离是×AB=5.
故答案是:
5;
(2)这个就是用梯形AOED的面积减去扇形AOE的面积,因为CD与OE垂直CD与AB平行所以AB与OE垂直所以扇形的面积是四分之一的圆o的面积
DE=5+5/√3=5+5√3/3所以S=(5+5√3/3+5)*5/2-25π/4=25√3/6+25-25π/4
点评:
本题主要考查了扇形的面积的计算,正确作出辅助线,把阴影部分的面积转化为梯形OADE的面积与扇形OAE的面积的差是解题的关键.
4、(2011•抚顺)如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.
(1)求证:
CF为⊙O的切线.
(2)若半径ON⊥AD于点M,CE=,求图中阴影部分的面积.
考点:
切线的判定;扇形面积的计算。
专题:
计算题。
分析:
(1)由CD垂直平分OB,得到E为OB的中点,且CD与OB垂直,又OB=OC,可得OE等于OC的一半,在直角三角形OEC中,根据锐角三角函数的定义,得到sin∠ECO的值为,可得∠ECO为30°,进而得到∠EOC为60°,又∠CFO为30°,可得∠OCE为直角,由OC为圆O的半径,可得CF为圆的切线;
(2)由
(1)得出的∠COF=60°,根据对称性可得∠EOD为60°,进而得到∠DOA=120°,由OA=OD,且OM与AD垂直,根据“三线合一”得到∠DOM为60°,在直角三角形OCE中,由CE的长及∠ECO=30°,可求出半径OC的长,又在直角三角形OMD中,由∠MDO=30°,半径OD=2,可求出MD及OM的长,然后利用扇形ODN的面积减去三角形ODM的面积即可求出阴影部分的面积.
解答:
解:
(1)∵CD垂直平分OB,∴OE=OB,∠CEO=90°
∵OB=OC,∴OE=OC,在Rt△COE中,sin∠ECO==
,∴∠ECO=30°,∴∠EOC=60°,
∵∠CFO=30°,∴∠OCE=90°,又OC是⊙O的半径,∴CF是⊙O的切线;
(2)由
(1)可得∠COF=60°,
由圆的轴对称性可得∠EOD=60°,∴∠DOA=120°,∵OM⊥AD,OA=OD,∴∠DOM=60°.在Rt△COE中,CE=,∠ECO=30°,cos∠ECO=
,∴OC=2,在Rt△ODM中,OD=2,∠ADO=30°,
∴OM=ODsin30°=1,MD=OD*cos30°=
,
∴S扇形OND==
∴S△OMD=
OM•DM=
,
∴S阴影=S扇形OND﹣S△OMD=
—
.
点评:
此题考查了切线的判定,直角三角形的性质,锐角三角形函数定义,等腰三角形的性质,以及直角三角形和扇形面积的公式,切线的判定方法为:
有点连接证垂直;无点作垂线,证明垂线段长等于半径.对于不规则图形的面积的求法,可利用转化的思想,把不规则图形的面积化为规则图形来求,例如本题就是用扇形的面积减去直角三角形的面积得到阴影部分面积的.
5、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=
∠CAB.
(1)求证:
直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=
,求BC和BF的长.
考点:
切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质;解直角三角形。
专题:
证明题;综合题。
分析:
(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABE=90°.
(2)利用已知条件证得∴△AGC∽△BFA,利用比例式求得线段的长即可.
解答:
(1)证明:
连接AE,
∵AB是⊙O的直径,∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,∴∠1=
∠CAB.
∵∠CBF=
∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.
(2)解:
过点C作CG⊥AB于点G.
∵sin∠CBF=
,∠1=∠CBF,∴sin∠1=
∵∠AEB=90°,AB=5,∴BE=AB•sin∠1=
,∵AB=AC,∠AEB=90°,∴BC=2BE=2
,在Rt△ABE中,由勾股定理得AE=2,∴sin∠2=
,cos∠2=
,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴
∴BF==
点评:
本题考查常见的几何题型,包括切线的判定,角的大小及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
6、(2010•义乌市)如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=
,BC=2
.
(1)求∠A的度数;
(2)求证:
BC是⊙O的切线;
(3)求MD的长度.
考点:
圆周角定理;切线的判定与性质;弧长的计算;特殊角的三角函数值。
专题:
计算题;证明题。
分析:
(1)根据三角函数的知识即可得出∠A的度数.
(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.
(3)根据切线的性质,运用三角函数的知识求出MD的长度.
解答:
解:
(1)∵∠BOE=60°,∴∠A=
∠BOE=30°.(2分)
(2)在△ABC中,∵cosC=
,∴∠C=60°.(1分)
又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC.(2分)
∴BC是⊙O的切线.(3分)
(3)∵点M是的中点,∴OM⊥AE.(1分)
在Rt△ABC中,∵BC=2
,∴AB=BC•tan60°=2
×
=6.(2分)
∴OA=
=3,∴OD=
OA=
,∴MD=
.(3分)
点评:
本题综合考查了三角函数的知识、切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
7、(2010•沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切与点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:
∠CDE=2∠B;
(2)若BD:
AB=
:
2,求⊙O的半径及DF的长.
考点:
切线的性质;垂径定理;解直角三角形。
专题:
计算题;证明题。
分析:
(1)连接OD,根据弦切角定理得∠CDE=∠EOD,再由同弧所对的圆心角是圆周角的2倍,可得∠CDE=2∠B;
(2)连接AD,根据三角函数,求得∠B=30°,则∠EOD=60°,推得∠C=30°,根据∠C的正切值,求出圆的半径,再在Rt△CDE中,利用∠C的正弦值,求得DE,从而得出DF的长.
解答:
(1)证明:
连接OD.
∵直线CD与⊙O相切与点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.
又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠EOD.又∵∠EOD=2∠B,∴∠CDE=2∠B.
(2)解:
连接AD.
∵AB是⊙O的直径,∴∠ADB=90°.
∵BD:
AB=
:
2,∴在Rt△ABD中cosB=BD/AB=
/2,∴∠B=30°.∴∠AOD=2∠B=60°.
又∵∠CDO=90°,∴∠C=30°.
在Rt△CDO中,CD=10,∴OD=10tan30°=10
/3,
即⊙O的半径为10
/3.
在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.
∵DF⊥AB于点E,∴DE=EF=1/2DF.∴DF=2DE=10.
点评:
本题考查的是切割线定理,切线的性质定理,勾股定理.
8、(2010•绍兴)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.
(1)求证:
EF是⊙O的切线;
(2)若EF=8,EC=6,求⊙O的半径.
考点:
切线的判定;勾股定理;相似三角形的判定与性质。
专题:
综合题。
分析:
(1)要证EF是⊙O的切线,只要连接OD,再证OD⊥EF即可.
(2)先根据勾股定理求出CF的长,再根据相似三角形的判定和性质求出⊙O的的半径.
解答:
解:
(1)连接OD交于AB于点G.
∵D是的中点,OD为半径,∴AG=BG.
∵AO=OC,∴OG是△ABC的中位线.∴OG∥BC,即OD∥CE.(2分)
又∵CE⊥EF,∴OD⊥EF,∴EF是⊙O的切线.(1分)
(2)解:
在Rt△CEF中,CE=6,EF=8,∴CF=10.
设半径OC=OD=r,则OF=10﹣r,
∵OD∥CE,∴△FOD∽△FCE,∴
,(2分)
∴
,∴r=15/4,
即:
⊙O的的半径为15/4.(2分)
点评:
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.
9、(2010•丽水)如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16cm,cos
OBH=4/5.
(1)求⊙O的半径;
(2)如果要将直线l向下平移到与⊙O相切的位置,平移的距离应是多少?
请说明理由.
考点:
垂径定理;切线的性质;解直角三角形。
分析:
(1)Rt△OHB中,由垂径定理易得BH的长,可利用∠OBH的余弦函数求出半径OB的长;
(2)由切线的性质知,若直线l与⊙O相切,那么直线l必过C点,故所求的平移距离应该是线段CH的长.
Rt△OHB中,根据勾股定理,可求出OH的长.CH=OC﹣OH.
解答:
解:
(1)∵直线l与半径OC垂直,
∴HB=1/2AB==8(cm).(2分)
∵cos∠OBH=HB/OB=4/5,
∴OB=5/4HB=5/4×8=10(cm);(2分)
(2)在Rt△OBH中,
OH=
(cm).(2分)
∴CH=10﹣6=4(cm).
所以将直线l向下平移到与⊙O相切的位置时,平移的距离是4cm.(2分)
点评:
此题综合考查了垂径定理、切线的性质及解直角三角形的应用.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 427