电子元器件综合知识大全.docx
- 文档编号:27849117
- 上传时间:2023-07-05
- 格式:DOCX
- 页数:42
- 大小:455.15KB
电子元器件综合知识大全.docx
《电子元器件综合知识大全.docx》由会员分享,可在线阅读,更多相关《电子元器件综合知识大全.docx(42页珍藏版)》请在冰豆网上搜索。
电子元器件综合知识大全
本文章共列出12节电子元器件详细资料,在应用中可以随时查阅,方便快捷,一目了然。
第一节、电阻
1.1电阻器的含义:
在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻.
1.2电阻器的英文缩写:
R(Resistor)
1.3电阻器在电路符号:
R
1.4电阻器的常见单位:
欧姆(Ω)千欧姆(KΩ),兆欧姆(MΩ)
1.5电阻器的单位换算:
1兆欧=103千欧=106欧
1.6电阻器的特性:
电阻为线性原件,即电阻两端电压与流过电阻的电流成正比,通过这段导体的电流强度与这段导体的电阻成反比。
即欧姆定律:
I=U/R。
1.7电阻的作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。
1.8电阻器在电路中用“R”加数字表示,如:
R15表示编号为15的电阻器。
1.9电阻器的在电路中的参数标注方法有3种,即直标法、色标法和数标法。
a、直标法是将电阻器的标称值用数字和文字符号直接标在电阻体上,其允许偏差则用百分数表示,未标偏差值的即为±20%.
b、数码标示法主要用于贴片等小体积的电路,从左至右第一,二位数表示有效数字,第三位表示10的倍幂或者用R表示(R表示0.)如:
472表示47×102Ω(即4.7KΩ); 104则表示100KΩ、;R22表示0.22Ω、122=1200Ω=1.2KΩ、1402=14000Ω=14KΩ、R22=0.22Ω、50C=324*100=32.4KΩ、17R8=17.8Ω、000=0Ω、0=0Ω.
c、色环标注法使用最多,普通的色环电阻器用4环表示,精密电阻器用5环表示,紧靠电阻体一端头的色环为第一环,露着电阻体本色较多的另一端头为末环.现举例如下:
如果色环电阻器用四环表示,前面两位数字是有效数字,第三位是10的倍幂,第四环是色环电阻器的误差范围(见图一)
四色环电阻器(普通电阻)
标称值第一位有效数字
标称值第二位有效数字
标称值有效数字后0的个数(10的倍幂)
允许误差
颜色
第一位有效值
第二位有效值
倍率
允许偏差
黑
0
0
棕
1
1
±1%
红
2
2
±2%
橙
3
3
黄
4
4
绿
5
5
±0.5%
蓝
6
6
±0.25%
紫
7
7
±0.1%
灰
8
8
白
9
9
―20%~+50%
金
5%
银
10%
无色
20%
图1-1两位有效数字阻值的色环表示法
如果色环电阻器用五环表示,前面三位数字是有效数字,第四位是10的倍幂. 第五环是色环电阻器的误差范围.(见图二)
五色环电阻器(精密电阻)
标称值第一位有效数字
标称值第二位有效数字
标称值第三位有效数字
标称值有效数字后0的个数(10的倍幂)
允许误差
颜色
第一位有效值
第二位有效值
第三位有效值
倍率
允许偏差
黑
0
0
0
棕
1
1
1
1%
红
2
2
2
2%
橙
3
3
3
黄
4
4
4
绿
5
5
5
0.5%
蓝
6
6
6
0.25
紫
7
7
7
0.1%
灰
8
8
8
白
9
9
9
-20%~+50%
金
±5%
银
±10%
图1-2三位有效数字阻值的色环表示法
d、贴片(SMT)电阻的表示法,通常也是用3位标示。
一般是2位数字和1位倍数,前两个数字是阻值有效数字,后1位数字表示10的倍幂,下面是贴片电阻阻值表示方法:
4R7(4.7欧),200(20欧),101(100欧),302(3K),203(20K),434(430K),105(1M)
1.10SMT电阻的尺寸表示:
用长和宽表示(如0201,0402,0603,0805,1206等,具体如02表示长为0.02英寸宽为0.01英寸)。
1.11一般情况下电阻在电路中有两种接法:
串联接法和并联接法
电阻的计算:
R1
R1R2
R2
串连:
并联:
R=R1+R2R=1/R1+1/R2
1.12多个电阻的串并联的计算方法:
串联:
R总串=R1+R2+R3+……Rn.
并联:
1/R总并=1/R+2/R+3/R……1/Rn
1.13电阻器好坏的检测:
a、用指针万用表判定电阻的好坏:
首先选择测量档位,再将倍率档旋钮置于适当的档位,一般100欧姆以下电阻器可选RX1档,100欧姆-1K欧姆的电阻器可选RX10档,1K欧姆-10K欧姆电阻器可选RX100档,10K-100K欧姆的电阻器可选RX1K档,100K欧姆以上的电阻器可选RX10K档.
b、测量档位选择确定后,对万用表电阻档为进行校0,校0的方法是:
将万用表两表笔金属棒短接,观察指针有无到0的位置,如果不在0位置,调整调零旋钮表针指向电阻刻度的0位置.
c、接着将万用表的两表笔分别和电阻器的两端相接,表针应指在相应的阻值刻度上,如果表针不动和指示不稳定或指示值与电阻器上的标示值相差很大,则说明该电阻器已损坏.
d、用数字万用表判定电阻的好坏;首先将万用表的档位旋钮调到欧姆档的适当档位,一般200欧姆以下电阻器可选200档,200-2K欧姆电阻器可选2K档,2K-20K欧姆可选20K档,20K-200K欧姆的电阻器可选200K档,200K-200M欧姆的电阻器选择2M欧姆档.2M-20M欧姆的电阻器选择20M档,20M欧姆以上的电阻器选择200M档.
第二节电容
2.1电容器的含义:
衡量导体储存电荷能力的物理量.
2.2电容器的英文缩写:
C(capacitor)
2.3电容器在电路中的表示符号:
C
2.4电容器常见的单位:
微法(uF)、纳法(nF)、皮法(pF)
2.5电容器的单位换算:
1uF=103nF=106pF;
2.6电容的作用:
隔直流,旁路,耦合,滤波,补偿,充放电,储能等
2.7电容器的特性:
电容器容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
。
电容的特性主要是隔直流通交流,通低频阻高频
2.8电容器在电路中一般用“C”加数字表示.如C25表示编号为25的电容.
2.9电容器的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
a;直标法是将电容的标称值用数字和单位在电容的本体上表示出来:
如:
220MF表示220UF;.01UF表示0.01UF;R56UF表示0.56UF;6n8表示6800PF.
b;不标单位的数码表示法.其中用一位到四位数表示有效数字,一般为PF,而电解电容其容量则为UF.如:
3表示3PF;2200表示2200PF;0.056表示0.056UF;
c;数字表示法:
一般用三为数字表示容量的大小,前两位表示有效数字,第三位表示10的倍幂.如102表示10*102=1000PF;224表示22*104=0.2UF
d:
用色环或色点表示电容器的主要参数。
电容器的色标法与电阻相同。
电容器偏差标志符号:
+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。
2.10电容的分类:
根据极性可分为有极性电容和无极性电容.我们常见到的电解电容就是有极性的,是有正负极之分.
2.11电容器的主要性能指标是:
电容器的容量(即储存电荷的容量),耐压值(指在额定温度范围内电容能长时间可靠工作的最大直流电压或最大交流电压的有效值)耐温值(表示电容所能承受的最高工作温度。
).
2.12电容器的品牌有:
主板电容主要分为台系和日系两种,日系品牌有:
NICHICON,RUBICON,RUBYCON(红宝石)、KZG、SANYO(三洋)、PANASONIC(松下)、NIPPON、FUJITSU(富士通)等;台系品牌有:
TAICON、G-LUXCON、TEAPO、CAPXON、OST、GSC、RLS等。
电容器的计算:
C1c2
~~~
c1c2
串连:
并联:
1/C=1/C1+1/C2C=C1+C2
2.13多个电容的串联和并联计算公式:
C串:
1/C=1/C1+1/C2+1/C3+.....+1/CN
C并C=C1+C2+C3+……+CN
2.14电容器的好坏测量
a;脱离线路时检测
采用万用表R×1k挡,在检测前,先将电解电容的两根引脚相碰,以便放掉电容内残余的电荷.当表笔刚接通时,表针向右偏转一个角度,然后表针缓慢地向左回转,最后表针停下。
表针停下来所指示的阻值为该电容的漏电电阻,此阻值愈大愈好,最好应接近无穷大处。
如果漏电电阻只有几十千欧,说明这一电解电容漏电严重。
表针向右摆动的角度越大(表针还应该向左回摆),说明这一电解电容的电容量也越大,反之说明容量越小。
b.线路上直接检测
主要是检测电容器是否已开路或已击穿这两种明显故障,而对漏电故障由于受外电路的影响一般是测不准的。
用万用表R×1挡,电路断开后,先放掉残存在电容器内的电荷。
测量时若表针向右偏转,说明电解电容内部断路。
如果表针向右偏转后所指示的阻值很小(接近短路),说明电容器严重漏电或已击穿。
如果表针向右偏后无回转,但所指示的阻值不很小,说明电容器开路的可能很大,应脱开电路后进一步检测。
c.线路上通电状态时检测,若怀疑电解电容只在通电状态下才存在击穿故障,可以给电路通电,然后用万用表直流挡测量该电容器两端的直流电压,如果电压很低或为0V,则是该电容器已击穿。
对于电解电容的正、负极标志不清楚的,必须先判别出它的正、负极。
对换万用表笔测两次,以漏电大(电阻值小)的一次为准,黑表笔所接一脚为负极,另一脚为正极。
第三节电感
3.1电感器的英文缩写:
L(Inductance)电路符号:
3.2电感器的国际标准单位是:
H(亨利),mH(毫亨),uH(微亨),nH(纳亨);
3.3电感器的单位换算是:
1H=103mH=106uH=109nH;1nH=10-3uH=10-6mH=10-9H
3.4电感器的特性:
通直流隔交流;通低频阻高频。
3.5电感器的作用:
滤波,陷波,振荡,储存磁能等。
3.6电感器的分类:
空芯电感和磁芯电感.磁芯电感又可称为铁芯电感和铜芯电感等.主机板中常见的是铜芯绕线电感.
3.7电感在电路中常用“L”加数字表示,如:
L6表示编号为6的电感。
电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成。
直流可通过线圈,直流电阻就是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感的特性是通直流阻交流,频率越高,线圈阻抗越大。
电感在电路中可与电容组成振荡电路。
电感一般有直标法和色标法,色标法与电阻类似。
如:
棕、黑、金、金表示1uH(误差5%)的电感。
3.8电感的好坏测量:
电感的质量检测包括外观和阻值测量.首先检测电感的外表有无完好,磁性有无缺损,裂缝,金属部分有无腐蚀氧化,标志有无完整清晰,接线有无断裂和拆伤等.用万用表对电感作初步检测,测线圈的直流电阻,并与原已知的正常电阻值进行比较.如果检测值比正常值显著增大,或指针不动,可能是电感器本体断路.若比正常值小许多,可判断电感器本体严重短路,线圈的局部短路需用专用仪器进行检测.
第四节二极管
4.1英文缩写:
D(Diode)电路符号是
4.2半导体二极管的分类
分类:
a按材质分:
硅二极管和锗二极管;
b按用途分:
整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。
稳压二极管发光二极管光电二极管变容二极管
4.3半导体二极管在电路中常用“D”加数字表示,如:
D5表示编号为5的半导体二极管。
4.4半导体二极管的导通电压是:
a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.
B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.
4.5半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
4.6半导体二极管可分为整流、检波、发光、光电、变容等作用。
4.7半导体二极管的识别方法:
a;目视法判断半导体二极管的极性:
一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.
b;用万用表(指针表)判断半导体二极管的极性:
通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.
c;测试注意事项:
用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
4.8变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。
变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。
在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。
变容二极管发生故障,主要表现为漏电或性能变差:
(1)发生漏电现象时,高频调制电路将不工作或调制性能变差。
(2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对方接收后产生失真。
出现上述情况之一时,就应该更换同型号的变容二极管。
4.9稳压二极管的基本知识
a、稳压二极管的稳压原理:
稳压二极管的特点就是击穿后,其两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
b、故障特点:
稳压二极管的故障主要表现在开路、短路和稳压值不稳定。
在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。
c、常用稳压二极管的型号及稳压值如下表:
型号1N47281N47291N47301N47321N47331N47341N47351N47441N47501N47511N4761
稳压值3.3V3.6V3.9V4.7V5.1V5.6V6.2V15V27V30V75V
4.10半导体二极管的伏安特性:
二极管的基本特性是单向导电性(注:
硅管的导通电压为0.6-0.8V;锗管的导通电压为0.2-0.3V),而工程分析时通常采用的是0.7V.
4.11半导体二极管的伏安特性曲线:
(通过二极管的电流I与其两端电压U的关系曲线为二极管的伏安特性曲线。
)见图三.
图三硅和锗管的伏安特性曲线
4.12半导体二极管的好坏判别:
用万用表(指针表)R﹡100或R﹡1K档测量二极管的正,反向电阻要求在1K左右,反向电阻应在100K以上.总之,正向电阻越小,越好.反向电阻越大越好.若正向电阻无穷大,说明二极管内部断路,若反向电阻为零,表明二极管以击穿,内部断开或击穿的二极管均不能使用。
第五节三极管
5.1半导体三极管英文缩写:
Q/T
5.2半导体三极管在电路中常用“Q”加数字表示,如:
Q17表示编号为17的三极管。
5.3半导体三极管特点:
半导体三极管(简称晶体管)是内部含有2个PN结,并且具有放大能力的特殊器件。
它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。
按材料来分可分硅和锗管,我国目前生产的硅管多为NPN型,锗管多为PNP型。
`E(发射极)C(集电极)E(发射极)C(集电极)
B(基极)
B(基极)
NPN型三极管PNP型三极管
5.4半导体三极管放大的条件:
要实现放大作用,必须给三极管加合适的电压,即管子发射结必须具备正向偏压,而集电极必须反向偏压,这也是三极管的放大必须具备的外部条件。
5.5半导体三极管的主要参数
a;电流放大系数:
对于三极管的电流分配规律Ie=Ib+Ic,由于基极电流Ib的变化,使集电极电流Ic发生更大的变化,即基极电流Ib的微小变化控制了集电极电流较大,这就是三极管的电流放大原理。
即β=ΔIc/ΔIb。
b;极间反向电流,集电极与基极的反向饱和电流。
c;极限参数:
反向击穿电压,集电极最大允许电流、集电极最大允许功率损耗。
5.6半导体三极管具有三种工作状态,放大、饱和、截止,在模拟电路中一般使用放大作用。
饱和和截止状态一般合用在数字电路中。
a;半导体三极管的三种基本的放大电路。
共射极放大电路
共集电极放大电路
共基极放大电路
电路形式
直流通道
静态工作点
交流通道
微变等效电路
ri
Rb//rbe
ro
RC
RC
用途
多级放大电路的中间级
输入、输出级或缓冲级
高频电路或恒流源电路
b;三极管三种放大电路的区别及判断可以从放大电路中通过交流信号的传输路径来判断,没有交流信号通过的极,就叫此极为公共极。
注:
交流信号从基极输入,集电极输出,那发射极就叫公共极。
交流信号从基极输入,发射极输出,那集电极就叫公共极。
交流信号从发射极输入,集电极输出,那基极就叫公共极。
5.7用万用表判断半导体三极管的极性和类型(用指针式万用表).
a;先选量程:
R﹡100或R﹡1K档位.
b;判别半导体三极管基极:
用万用表黑表笔固定三极管的某一个电极,红表笔分别接半导体三极管另外两各电极,观察指针偏转,若两次的测量阻值都大或是都小,则改脚所接就是基极(两次阻值都小的为NPN型管,两次阻值都大的为PNP型管),若两次测量阻值一大一小,则用黑笔重新固定半导体三极管一个引脚极继续测量,直到找到基极。
c;.判别半导体三极管的c极和e极:
确定基极后,对于NPN管,用万用表两表笔接三极管另外两极,交替测量两次,若两次测量的结果不相等,则其中测得阻值较小得一次黑笔接的是e极,红笔接得是c极(若是PNP型管则黑红表笔所接得电极相反)。
d;判别半导体三极管的类型.
如果已知某个半导体三极管的基极,可以用红表笔接基极,黑表笔分别测量其另外两个电极引脚,如果测得的电阻值很大,则该三极管是NPN型半导体三极管,如果测量的电阻值都很小,则该三极管是PNP型半导体三极管.
5.8现在常见的三极管大部分是塑封的,如何准确判断三极管的三只引脚哪个是b、c、e?
三极管的b极很容易测出来,但怎么断定哪个是c哪个是e?
a;这里推荐三种方法:
第一种方法:
对于有测三极管hFE插孔的指针表,先测出b极后,将三极管随意插到插孔中去(当然b极是可以插准确的),测一下hFE值,
b;然后再将管子倒过来再测一遍,测得hFE值比较大的一次,各管脚插入的位置是正确的。
第二种方法:
对无hFE测量插孔的表,或管子太大不方便插入插孔的,可以用这种方法:
对NPN管,先测出b极(管子是NPN还是PNP以及其b脚都很容易测出,是吧?
),将表置于R×1kΩ档,将红表笔接假设的e极(注意拿红表笔的手不要碰到表笔尖或管脚),黑表笔接假设的c极,同时用手指捏住表笔尖及这个管脚,将管子拿起来,用你的舌尖舔一下b极,看表头指针应有一定的偏转,如果你各表笔接得正确,指针偏转会大些,如果接得不对,指针偏转会小些,差别是很明显的。
由此就可判定管子的c、e极。
对PNP管,要将黑表笔接假设的e极(手不要碰到笔尖或管脚),红表笔接假设的c极,同时用手指捏住表笔尖及这个管脚,然后用舌尖舔一下b极,如果各表笔接得正确,表头指针会偏转得比较大。
当然测量时表笔要交换一下测两次,比较读数后才能最后判定。
这个方法适用于所有外形的三极管,方便实用。
根据表针的偏转幅度,还可以估计出管子的放大能力,当然这是凭经验的。
c;第三种方法:
先判定管子的NPN或PNP类型及其b极后,将表置于R×10kΩ档,对NPN管,黑表笔接e极,红表笔接c极时,表针可能会有一定偏转,对PNP管,黑表笔接c极,红表笔接e极时,表针可能会有一定的偏转,反过来都不会有偏转。
由此也可以判定三极管的c、e极。
不过对于高耐压的管子,这个方法就不适用了。
对于常见的进口型号的大功率塑封管,其c极基本都是在中间(我还没见过b在中间的)。
中、小功率管有的b极可能在中间。
比如常用的9014三极管及其系列的其它型号三极管、2SC1815、2N5401、2N5551等三极管,其b极有的在就中间。
当然它们也有c极在中间的。
所以在维修更换三极管时,尤其是这些小功率三
极管,不可拿来就按原样直接安上,一定要先测一下.
5.9半导体三极管的分类:
a;按频率分:
高频管和低频管
b;按功率分:
小功率管,中功率管和的功率管
c;按机构分:
PNP管和NPN管
d;按材质分:
硅管和锗管
e;按功能分:
开关管和放大
5.10半导体三极管特性:
三极管具有放大功能(三极管是电流控制型器件-通过基极电流或是发射极电流去控制集电极电流;又由于其多子和少子都可导电称为双极型元件)
NPN型三极管共发射极的特性曲线。
IC(mA)
IB(mA)80μA
4饱
UCE=0V1V和放大区60μA
3区
0.4ΔICΔIB40μA
2
0.220μA
1
00.40.60.8UBE(V)IB=0μA
截止区
输入特性曲线02468UCE(V)
输出特性曲线
三极管各区的工作条件:
1.放大区:
发射结正偏,集电结反偏:
2.饱和区:
发射结正偏,集电结正偏;
3.截止区:
发射结反偏,集电结反偏。
5.11半导体三极管的好坏检测
a;先选量程:
R﹡100或R﹡1K档位
b;测量PNP型半导体三极管的发射极和集电极的正向电阻值:
红表笔接基极,黑表笔接发射极,所测得阻值为发射极正向电阻值,若将黑表笔接集电极(红表笔不动),所测得阻值便是集电极的正向电阻值,正向电阻值愈小愈好.
c;测量PNP型半导体三极管的发射极和集电极的反向电阻值:
将黑表笔接基极,红表笔分别接发射极与集电极,所测得阻值分别为发射极和集电极的反向电阻,反向电阻愈小愈好.
d;测量NPN型半导体三极管的发射极和集电极的正向电阻值的方法和测量PNP型半导体三极管的方法相反.
第六节场效应管(MOS管)
6.1场效应管英文缩写:
FET(Field-effe
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子元器件 综合 知识 大全