taq酶和PCR.docx
- 文档编号:27807173
- 上传时间:2023-07-05
- 格式:DOCX
- 页数:23
- 大小:45.80KB
taq酶和PCR.docx
《taq酶和PCR.docx》由会员分享,可在线阅读,更多相关《taq酶和PCR.docx(23页珍藏版)》请在冰豆网上搜索。
taq酶和PCR
Taq酶专场--我们也许天天都在PCR但我们对Taq酶知多少呢?
第一节 概述
聚合酶链反应或多聚酶链反应(PolymeraseChainReaction,PCR),又称无细胞克隆技术(“freebacteria”cloningtechnique),是一种对特定的DNA片段在体外进行快速扩增的新方法。
该方法一改传统分子克隆技术的模式,不通过活细胞,操作简便,在数小时内可使几个拷贝的模板序列甚至一个DNA分子扩增107~108倍,大大提高了DNA的得率。
因此,现已广泛应用到分子生物学研究的各个领域。
PCR技术最早由美国Cetus公司人类遗传研究室KaryMullis及同事于1985年发现并研制成功的;最早的应用报道是Saiki等1985年将PCR技术应用于β-珠蛋白基因扩增和镰刀状红细胞贫血的产前诊断。
随后使用了1976年Chien等分离的热稳定性TaqDNA聚合酶,使PCR操作大为简化,并使PCR自动化成为可能;1987年KaryMullis等完成了自动化操作装置,使PCR技术进行实用阶段。
国内复旦大学1988年起开始研制耐热性多聚酶,军事医学科学院马立人教授等在1989年研制成功了PCR自动装置,并且不断推陈出新,最近研制的PTC-51A/B型DNA热循环仪体积小,造型美观,价格适宜,操作简单,尤为适宜国内应用。
PCR发明不到10年,却已获得广泛应用。
目前,每年都有上千篇文章 发表。
1991年,期刊“PCR方法与应用”(PCrMethodsandApplication)在美国创刊,使有关学者有了自己的论坛和参考的专业期刊。
PCR技术作为一种方法学革命,必将大大推动分子生物学各有关学科的研究,使其达到一个新的高度。
1993年度诺贝尔化学将已于10月13日揭晓,KaryMullis因发明了“聚合酶链式反应”而获得此殊荣。
现在世界各地都在使用PCR检测病人血液中的微量遗传物质,这一成就为精确诊断艾滋病及其它病症铺平了道路。
瑞典皇家科学院说:
“PCR方法已经广泛应用于生物医学中。
该方法同DNA测序法结合起来很可能将成为研究动植物分类学的一种革新工具。
”一名加拿大籍英国科学家MichaelSmith因开创了“寡核苷酸基因定点诱变”的方法而与Mullis同享此荣。
第二节 PCR技术的原理
PCR是体外酶促合成特异DNA片段的新方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成:
即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3’端为合成的起点,以单核苷酸为原料,沿模板以5’→3’方向延伸,合成DNA新链。
这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。
如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。
图22-1 PCR基本原理示意图
假设扩增效率为“X”,循环数为“n”,则二者与扩增倍数“y”的关系式可表示为:
y=(1+X)n。
扩增30个循环即n=30时,若X=100%,则y=230=1073741824(>109);而若X=80%时,则y=1.830=45517159.6(>107)。
由此可见,其扩增的倍数是巨大的,将扩增产物进行电泳,经溴化乙锭染色,在紫外灶照射下(254nm)一般都可见到DNA的特异扩增区带。
第三节 PCR操作范例及反应体系的组成
一、PCR操作范例
在一个典型的PCR反应体系中需加入:
适宜的缓冲液、微量的模板DNA、4×dNTPs、耐热性多聚酶、Mg2+和两个合成的DNA引物。
模板DNa94℃变性1min,引物与模板40~60℃退火1min,72℃延伸2min。
在首次循环前模板预变性3~5min;在末次循环后,样品仍需继续延伸3~5min以上,确保扩增的DNA为双链DNA。
为便于了解PCR反应中各成份的组成,加入量和反应条件,使人们以此为基础,对不同的研究对象逐项改变来找到最佳反应条件,特列举PerkinElmerCetus公司GeneAmpDNA试剂盒提供的典型反应条件供参考。
表22-1PCR反应混合液
成分 加入体积(μl) 最终浓度
双蒸馏水 53.5
10×反应缓冲液[1] 10.0 [1×]Mg2+1.5mmol/lK+50mmol/L
4×dNTPs(各1.25mmol/L) 16.0 各200μmol/L
λ-DNA模板(全长48.5kD) 10.0 1ng/次
引物1,2(各25bp,20μmol/L)[3,4] 5.0 1.0μmol/L(100pmol)
Taq聚合酶储存液[2] 0.5 2U/100μl
总体积(pH8.3) 100.0
石蜡油 50~100.0
扩增条件:
94℃60s,37℃60s,72℃120s,共25~30个循环。
注:
[1]反应缓冲液[10×]含:
100mmol/lTris-HClpH8.3(25℃),
15mmol/LKCl,15mmol/LMgCl2,
0.01%(W/V)明胶(SigmaG2500)
[2]酶储存缓冲液(-20℃)含:
50%甘油,100mmol/lKCl,
20mmol/LTris-HClph8.0
0.1mmol/LEDTA,1.0mmol/LDTT
200μg/ml明胶
0.5%吐温20,0.5%NonidetP40
[3][4]引物,1,2:
扩增λ-噬菌体基因中500bp的片段
引物1序列:
7131~7155(5’)-GATGAGTTCGTGTCCGTACAACTGG-(3’)
引物2序列:
7606~7630(5’)-GGTTATCGAAATCAGCCACAGCGCC-(3’)
注意(3’)端有2个bp互补故易生成50bp的双体
二、PCR反应系统的组成
(一)PCR缓冲液(PCrBuffer)
用于PCR的标准缓冲液见PCR操作范例。
于72℃时,反应体系的pH值将下降1个单位,接近于7.2。
二价阳离子的存在至关重要,影响PCR的特异性和产量。
实验表明,Mg2+优于Mn2+,而Ca2+无任何作用。
1.Mg2+浓度Mg2+的最佳浓度为1.5mmol/L(当各种dNTP浓度为200mmol/L时),但并非对任何一种模板与引物的结合都是最佳的。
首次使用靶序列和引物结合时,都要把Mg2+浓度调到最佳,其浓度变化范围为1~10mmol/L。
Mg2+过量易生成非特异性扩增产物,Mg2+不足易使产量降低。
样品中存在的较高浓度的螯合剂如EDTA或高浓度带负电荷的离子基团如磷酸根,会与Mg2+结合而降低Mg2+有效浓度。
因此,用作模板的DNA应溶于10mmol/lTris-HCl(pH7.6)0.1mmol/LEDTA中。
dNTP含有磷酸根,其浓度变化将影响Mg2+的有效浓度。
标准反应体系中4×dTNPs的总浓度为0.8mmol/L,低于1.5mmol/L的Mg2+浓度。
因此,在高浓度DNA及dNTP条件时,必须相应调整Mg2+的浓度。
2.Tris-HCl缓冲液在PCR中使用10~50mmol/L的Tris–HCl缓冲液,很少使用其他类型的缓冲液。
Tris缓冲液是一种双极化的离子缓冲液,pKa为8.3(20℃),△pKa为0.021/℃。
因此,20mmol/lTrispH8.3(20℃)时,在典型的热循环条件下,真正的pH值在7.8~6.8之间。
3.KCl浓度K+浓度在50mmol/L时能促进引物退火。
但现在的研究表明,NaCl浓度在50mmol/L时,KCl浓度高于50mmol/L将会抑制Taq酶的活性,少加或不加KCl对PCR结果没有太大影响。
4.明胶明胶和BSA或非离子型去垢剂具有稳定酶的作用。
一般用量为100μg/ml,但现在的研究表明,加或不加都能得到良好和PCR结果,影响不大。
5.二甲基亚砜(DMSO) 在使用Klenow片段进行PCR时DMSO是有用的;加入10%DM-SO有利于减少DNA的二级结构,使(G+C)%含量高的模板易于完全变性,在反应体系中加入DMSO使PCR产物直接测序更易进行,但超过10%时会抑制TaqDNA聚合酶的活性,因此,大多数并不使用DMSO。
(二)四种脱氧三磷酸核苷酸(4×dNTPs)
在PCR反体系中dNTP终浓度高于50mmol/L会抑制Taq酶的活性,使用低浓度dNTP可以减少在非靶位置启动和延伸时核苷酸错误掺入,高浓度dNTPs易产生错误掺入,而浓度太低,势必降低反应物的产量。
PCR常用的浓度为50~200μmol/L,不能低于10~15μmol/L。
四种dNTP的浓度应相同,其中任何一种浓度偏高或偏低,都会诱导聚合酶的错误掺入,降低合成速度,过早终止反应。
决定最低dNTP浓度的因素是靶序列DNA的长度和组成,例如,在100μl反应体系中,4×dNTPs浓度若用20μmol/L,基本满足合成2.6μgDNA或10pmol的400bp序列。
50μmol/L的4×dNTPs可以合成6.6μgDNA,而200μmol/L足以合成25μg/DNA。
购自厂商的dNTP溶液一般均未调pH,应用1mol/lNaOH将dNTP贮存液pH调至7.0,以保证反应的pH值不低于7.1。
市购的游离核苷酸冻干粉,溶解后要用NaOH中和,再用紫外分光光度计定量。
(三)引物的量
引物在PCR反应中的浓度一般在0.1~1μmol/L之间。
浓度过高易形成引物二聚体且产生非特异性产物。
一般来说用低浓度引物经济、特异,但浓度过低,不足以完成30个循环的扩增反应,则会降低PCR的产率。
(四)TaqDNA聚合酶的量
典型PCR反应混合物中,所用酶浓度为2.5U/μl,常用范围为1~4U/100μl。
由于DNA模板的不同和引物不同,以及其它条件的差异,多聚酶的用量亦有差异,酶量过多会导致非特异产物的增加。
由于生产厂家所用兵配方、制造条件以及活性定义不同,不同厂商供应的TaqDNA聚合酶性能也有所不同。
Cetus公司酶定义是:
1个酶单位是指在以下分析条件下,于74℃,30min内使10nmmol的dNTP掺入酸不溶性成分所需的酶。
测定时间为10min,折算成30min掺入量。
分析条件为25nmol/LTAPS(三羟基-甲基-氨基丙烷磺酸钠pH9.3,25℃),50mmol/lKCl,2mmol/LMgCl2,1mmol/Lβ-ME(巯基乙醇),dATP、dTTP、dGTP各200mmol/L,dCTP为100mmol/L(由不标记及α-32P标记混合),12.μg变性鲱鱼精子DNA,最终体积50μl。
(五)模板
单、双链DNA或RNA都可以作为PCR的样品。
若起始材料是RNA,须先通过逆转录得到第一条cDNA。
虽然PCR可以仅用极微量的样品,甚至是来自单一细胞的DNA,但为了保证反应的特异性,还应用ng级的克隆DNA,μg水平的单拷贝染色体DNA或104拷贝的待扩增片段作为起始材料,模板可以是粗品,但不能混有任何蛋白酶、核酸酶、TaqDNA聚合酶抑制剂以及能结合DNA的蛋白。
DNA的大小并不是关键的因素,但当使用极高分子量的DNA(如基因组的DNA时),如用超声处理或用切点罕见的限制酶(如Sal1和Not1)先行消化,则扩增效果更好。
闭环靶序列DNA的扩增效率略低于线状DNA,因此,用质粒作反应模板时最好先将其线状化。
模板靶序列的浓度因情况而异,往往非实验人员所控制,实验可按已知靶序列量逆减的方式(1ng,0.1ng,0.001ng等),设置一组对照反应,以检测扩增反应的灵敏度是否符合要求。
(六)石蜡油
PCR扩增时建议在混合物上面铺一层石蜡油,减少PCR过程中尤其是变性时液体蒸发所造成的产物的丢失。
研究表明,应用石蜡油可使扩增产量增加5倍,可能与石蜡油维持热恒定和整个反应体系中盐浓度有关。
三、电泳分析
在实际工作中常采用琼脂糖凝胶电泳。
一般情况下先在电泳缓冲液或凝胶中加1%溴化乙锭(EB)(每100ml加100μl),然后将已经制备好的1%~2%琼脂糖凝胶(用电泳缓冲液配制)放入电泳槽内,加入待测样品10μl,同时用分子量标准品作标记。
琼脂糖浓度应按分离DNA片段的大小进行选择,一般用1.5%~2%,电泳电压75V,待样品进行凝胶内距胶末端1cm时,切断电源,取出凝胶在紫外灯下直接观察结果。
由于溴化乙锭可与双链DNA形成结合物,在紫外灯下能发射荧光,使EB的荧光强度增强80~100倍,所以,电泳后凝胶在紫外灯下可直接观察。
一般肉眼观察DNA量可达10ng,其荧光强度与DNA含量成正比。
DNA分子在凝胶中泳动速度决定于电荷效应及分子效应。
前者由所带净电荷量决定,而后者与分子大小及构型有关。
按照DNA分子大小,其凝胶浓度可做不同的调整。
有条件的实验室也可用聚丙烯酰胺凝胶电泳(PAGE)分析扩增的DNA片段。
表22-2电泳检测扩增结果,EB荧光显色(254nm)
琼脂糖(%) kb PAGR(%) bp
0.3 60~5 3.5 100~1000
0.6 20~1
0.7 10~0.8 5.0 80~500
0.9 7~0.5 8.0 60~400
1.2 6~0.4 12.0 40~200
1.5 4~0.2 20.0 10~100
第四节 影响PCR的主要因素
PCR技术必须有人工合成的合理引物和提取的样品DNA,然后才进行自动热循环,最后进行产物鉴定与分析。
引物设计与合成目前只能在少数技术力量较强的研究院、所进行,临床应用只需购买PCR检测试剂盒就可开展工作,PCR自动热循环中影响因素很多,对不同的DNA样品,PCR反应中各种成份加入量和温度循环参数均不一致。
现将几种主要影响因素介绍如下。
一、温度循环参数
在PCR自动热循环中,最关键的因素是变性与退火的温度。
如操作范例所示,其变性、退火、延伸的条件是:
94℃60s,37℃60s,72℃120s,共25~30个循环,扩增片段500bp。
在这里,每一步的时间应从反应混合液达到所要求的温度后开始计算。
在自动热循环仪内由混合液原温度变至所要求温度的时间需要30~60s,这一迟滞时间的长短取决于几个因素,包括反应管类型、壁厚、反应混合液体积、热源(水浴或加热块)以及两步骤间的温度差,在设置热循环时应充分给以重视和考虑,对每一仪器均应进行实测。
关于热循环时间的另一个重要考虑是两条引物之间的距离;距离越远,合成靶序列全长所需的时间也越长,前文给出的反应时间是按最适于合成长度500bp的靶序列拟定的。
下面就各种温度的选择作一介绍。
1.模板变性温度变性温度是决定PCR反应中双链DNA解链的温度,达不到变性温度就不会产生单链DNA模板,PCR也就不会启动。
变性温度低则变性不完全,DNA双链会很快复性,因而减少产量。
一般取90~95℃。
样品一旦到达此温度宜迅速冷却到退火温度。
DNA变性只需要几秒种,时间过久没有必要;反之,在高温时间应尽量缩短,以保持TaqDNA聚合酶的活力,加入TaqDNA聚合酶后最高变性温度不宜超过95℃。
2.引物退火温度退火温度决定PCR特异性与产量;温度高特异性强,但过高则引物不能与模板牢固结合,DNA扩增效率下降;温度低产量高,但过低可造成引物与模板错配,非特异性产物增加。
一般先由37℃反应条件开始,设置一系列对照反应,以确定某一特定反应的最适退火温度。
也可根据引物的(G+C)%含量进行推测,把握试验的起始点,一般试验中退火温度Ta(annealingtemperature)比扩增引物的融解温度TTm(meltingtemperature)低5℃,可按公式进行计算:
Ta=Tm-5℃=4(G+C)+2(A+T)-5℃
其中A,T,G,C分别表示相应碱基的个数。
例如,20个碱基的引物,如果(G+C)%含量为50%时,则Ta的起点可设在55℃。
在典型的引物浓度时(如0.2μmol/L),退火反应数秒即可完成,长时间退火没有必要。
3.引物延伸温度温度的选择取决于TaqDNA聚合酶的最适温度。
一般取70~75℃,在72℃时酶催化核苷酸的标准速率可达35~100个核苷酸/秒。
每分钟可延伸1kb的长度,其速度取决于缓冲溶液的组成、pH值、盐浓度与DNA模板的性质。
扩增片段如短于150bp,则可省略延伸这一步,而成为双温循环,因TaqDNA聚合酶在退火温度下足以完成短序列的合成。
对于100~300bp之间的短序列片段,采用快速、简便的双温循环是行之有效的。
此时,引物延伸温度与退火温度相同。
对于1kb以上的DNA片段,可根据片段长度将延伸时间控制在1~7min,与此同时,在PCR缓冲液中需加入明胶或BSA试剂,使TaqDNA聚合酶在长时间内保持良好的活性与稳定性;15%~20%的甘油有助于扩增2.5kb左右或较长DNA片段。
4.循环次数常规PCR一般为25~40个周期。
一般的错误是循环次数过多,非特异性背景严重,复杂度增加。
当然循环反应的次数太少,则产率偏低。
所以,在保证产物得率前提下,应尽量减少循环次数。
扩增结束后,样品冷却并置4℃保存。
二、引物引物设计
要扩增模板DNA,首先要设计两条寡核苷酸引物,所谓引物,实际上就是两段与待扩增靶DNA序列互补的寡核苷酸片段,两引物间距离决定扩增片段的长度,两引物的5’端决定扩增产物的两个5’末端位置。
由此可见,引物是决定PCR扩增片段长度、位置和结果的关键,引物设计也就更为重要。
引物设计的必要条件是与引物互补的靶DNA序列必须是已知的,两引物之间的序列未必清楚,这两段已知序列一般为15~20个碱基,可以用DNA合成仪合成与其对应互补的二条引物,除此之外,引物设计一般遵循的原则包括:
1.引物长度根据统计学计算,长约17个碱基的寡核苷酸序列在人的基因组中可能出现的机率的为1次。
因此,引物长度一般最低不少于16个核苷酸,而最高不超过30个核苷酸,最佳长度为20~24个核苷酸。
这样短的寡核苷酸在聚合反应温度(通过72℃)下不会形成稳定的杂合体。
有时可在5’端添加不与模板互补的序列,如限制性酶切位点或启动因子等,以完成基因克隆和其他特殊需要;引物5’端生物素标记或荧光标记可用于微生物检测等各种目的。
有时引物不起作用,理由不明,可移动位置来解决。
2.(G+C)%含量引物的组成应均匀,尽量避免含有相同的碱基多聚体。
两个引物中(G+C)%含量应尽量相似,在已知扩增片段(G+C)%含量时宜接近于待扩增片段,一般以40%~60%为佳。
3.引物内部应避免内部形成明显的次级结构,尤其是发夹结构(hairpinstructures)。
例如:
4.引物之间两个引物之间不应发生互补,特别是在引物3’端,即使无法避免,其3’端互补碱基也不应大于2个碱基,否则易生成“引物二聚体”或“引物二倍体”(Primerdimer)。
所谓引物二聚体实质上是在DNA聚合酶作用下,一条引物在另一条引物序列上进行延伸所形成的与二条引物长度相近的双链DNA片段,是PCR常见的副产品,有时甚至成为主要产物。
另外,两条引物之间避免有同源序列,尤为连续6个以上相同碱基的寡核苷酸片段,否则两条引物会相互竞争模板的同一位点;同样,引物与待扩增靶DNA或样品DNA的其它序列也不能存在6个以上碱基的同源序列。
否则,引物就会与其它位点结合,使特异扩增减少,非特异扩增增加。
5.引物3’端配对DNA聚合酶是在引物3’端添加单核苷酸,所以,引物3’端5~6个碱基与靶DNA的配对要求必须精确和严格,这样才能保证PCR有效扩增。
引物设计是否合理可用PCRDESN软件和美国PRIMER软件进行计算机检索来核定。
人工合成的寡核苷酸引于最好经过色谱(层析)纯化或PAGE纯化,以除去未能合成至全长的短链等杂质。
纯化引物在25%乙腈溶液中4℃保存可阻止微生物的生长;一般情况下,不用的引物应保存在-20℃冰箱中,在液体中引物能保存6个月,冻干后可保存1~2年。
三、DNA聚合酶
早在1956年Kornberg等就从大肠杆菌提取液中发现了DNA聚合酶,并且得到了DNA聚合酶Ⅰ纯品。
DNA聚合酶Ⅰ是由分子量为109000的一条多肽链构成,此酶可被枯草杆菌蛋白酶分解为两个片段,一个片段分子量为76000,有聚合酶活性,并有3’→5外切酶活力,即Klenow片段(Klenowfragment)。
另一个片段分子量为34000,具有5’→’3’外切酶活力。
因此,DNA聚合酶具有几种功能:
一是聚合作用,以DNA为模板,将dNTP中的脱氧单核苷酸逐个加到3-OH末端。
二是有’3’→5’外切酶活力,能识别和消除错配的引物末端,与复制过程中校正功能有关。
三是5’→3’外切酶活力,它能从5’端水解核苷酸,还能经过几个核苷酸起作用,切除错配的核苷酸。
1985年Mullis等发明了PCR方法,以Klenow片段完成β-珠蛋白的PCR后,世界上许多实验室就考虑用耐热DNA聚合酶代替Klenow片段进行PCR,使耐热多聚酶的研究得以迅速发展。
人们从生活于60℃(B.Stearothermophilus)到87℃(S.Solfatavicus)的许多菌中分离纯化出耐热DNA聚合酶,但有些酶不能耐受DNA变性所需温度,所以无法应用于PCR。
现就PCR反应中常用的DNA聚合酶等作一详细介绍。
1.TaqDNA聚合酶用TaqDNA聚合酶代替大肠杆菌DNA聚合酶Ⅰ的Klenow片段是使PCR普及应用的关键。
Klenow片段不能耐受95℃的双链DNA变性温度,所以每次循环都要加入新酶;而TaqDNA聚合酶可以耐受93~95℃的高温,避免了不断补加多聚酶的繁琐操作,同时使退火和延伸温度得以提高,减少了非特异性产物和DNA二级结构对PCR的干扰,增进了PCR特异性、产量和敏感度,二者相比,其主要区别在于:
①Klenow酶的最适温度为37℃,扩增的产物并非全是目的序列,需用探针检测。
Taq酶则不仅产率高而特异性也高。
它的最适温度为74~75℃。
因而使退火温度可以提高,使退火严格性提高,减少
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- taq PCR