中央处理器.docx
- 文档编号:27802800
- 上传时间:2023-07-05
- 格式:DOCX
- 页数:34
- 大小:84.33KB
中央处理器.docx
《中央处理器.docx》由会员分享,可在线阅读,更多相关《中央处理器.docx(34页珍藏版)》请在冰豆网上搜索。
中央处理器
中央处理器
百科名片
AMD与英特尔CPU对比天梯图
中央处理器(英文CentralProcessingUnit,CPU)是一台计算机的运算核心和控制核心。
CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。
其功能主要是解释计算机指令以及处理计算机软件中的数据。
CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。
差不多所有的CPU的运作原理可分为四个阶段:
提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。
CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。
所谓的计算机的可编程性主要是指对CPU的编程。
CPU的功能
1.指令顺序控制
2.操作控制
3.时间控制
4.数据加工
提取
解码
执行
写回
基本结构
运算逻辑部件
寄存器部件
控制部件
发展历史
第1阶段
第2阶段
第3阶段
第4阶段
第5阶段
第6阶段
性能指标
主频
外频
前端总线(FSB)频率
倍频系数
缓存
CPU扩展指令集
CPU内核和I/O工作电压
技术架构
制造工艺
指令集
超流水线与超标量
封装形式
多线程
多核心
SMP
NUMA技术
乱序执行技术
分枝技术
CPU内部的内存控制器
2012CPU性能排行
选购CPU时需要注意的参数
展开
CPU的功能
1.指令顺序控制
2.操作控制
3.时间控制
4.数据加工
提取
解码
执行
写回
基本结构
运算逻辑部件
寄存器部件
控制部件
发展历史
第1阶段
第2阶段
第3阶段
第4阶段
第5阶段
第6阶段
性能指标
主频
外频
前端总线(FSB)频率
倍频系数
缓存
CPU扩展指令集
CPU内核和I/O工作电压
技术架构
制造工艺
指令集
超流水线与超标量
封装形式
多线程
多核心
SMP
NUMA技术
乱序执行技术
分枝技术
CPU内部的内存控制器
2012CPU性能排行
选购CPU时需要注意的参数
展开
编辑本段CPU的功能
计算机求解问题是通过执行程序来实现的。
程序是由指令构成的序列,执行程序就是按指令序列逐条执行指令。
一旦把程序装入主存储器(简称主存)中,就可以由CPU自动地完成从主存取指令和执行指令的任务。
英特尔和AMD主流CPU和CPU插槽
CPU具有以下4个方面的基本功能:
1.指令顺序控制
这是指控制程序中指令的执行顺序。
程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机工作的正确性。
2.操作控制
一条指令的功能往往是由计算机中的部件执行一序列的操作来实现的。
CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。
3.时间控制
时间控制就是对各种操作实施时间上的定时。
在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。
只有这样,计算机才能有条不紊地自动工作。
4.数据加工
即对数据进行算术运算和逻辑运算,或进行其他的信息处理。
CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。
它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。
指令是计算机规定执行操作的类型和操作数的基本命令。
指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。
有的指令中也直接包含操作数本身。
提取
第一阶段,提取,从存储器或高速缓冲存储器中检索指令(为数值或一系列数值)。
由程序计数器(ProgramCounter)指定存储器的位置。
(程序计数器保存供识别目前程序位置的数值。
换言之,程序计数器记录了CPU在目前程序里的踪迹。
)
提取指令之后,程序计数器根据指令长度增加存储器单元。
指令的提取必须常常从相对较慢的存储器寻找,因此导致CPU等候指令的送入。
这个问题主要被论及在现代处理器的快取和管线化架构。
解码
CPU根据存储器提取到的指令来决定其执行行为。
在解码阶段,指令被拆解为有意义的片断。
根据CPU的指令集架构(ISA)定义将数值解译为指令。
一部分的指令数值为运算码(Opcode),其指示要进行哪些运算。
其它的数值通常供给指令必要的信息,诸如一个加法(Addition)运算的运算目标。
这样的运算目标也许提供一个常数值(即立即值),或是一个空间的定址值:
暂存器或存储器位址,以定址模式决定。
在旧的设计中,CPU里的指令解码部分是无法改变的硬件设备。
不过在众多抽象且复杂的CPU和指令集架构中,一个微程序时常用来帮助转换指令为各种形态的讯号。
这些微程序在已成品的CPU中往往可以重写,方便变更解码指令。
执行
在提取和解码阶段之后,紧接着进入执行阶段。
该阶段中,连接到各种能够进行所需运算的CPU部件。
例如,要求一个加法运算,算术逻辑单元(ALU,ArithmeticLogicUnit)将会连接到一组输入和一组输出。
输入提供了要相加的数值,而输出将含有总和的结果。
ALU内含电路系统,易于输出端完成简单的普通运算和逻辑运算(比如加法和位元运算)。
如果加法运算产生一个对该CPU处理而言过大的结果,在标志暂存器里可能会设置运算溢出(ArithmeticOverflow)标志。
写回
最终阶段,写回,以一定格式将执行阶段的结果简单的写回。
运算结果经常被写进CPU内部的暂存器,以供随后指令快速存取。
在其它案例中,运算结果可能写进速度较慢,但容量较大且较便宜的主记忆体中。
某些类型的指令会操作程序计数器,而不直接产生结果。
这些一般称作“跳转”(Jumps),并在程式中带来循环行为、条件性执行(透过条件跳转)和函式。
许多指令会改变标志暂存器的状态位元。
这些标志可用来影响程式行为,缘由于它们时常显出各种运算结果。
例如,以一个“比较”指令判断两个值大小,根据比较结果在标志暂存器上设置一个数值。
这个标志可藉由随后跳转指令来决定程式动向。
在执行指令并写回结果之后,程序计数器值会递增,反覆整个过程,下一个指令周期正常的提取下一个顺序指令。
如果完成的是跳转指令,程序计数器将会修改成跳转到的指令位址,且程序继续正常执行。
许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。
这个部分一般涉及“经典RISC管线”,那些实际上是在众多使用简单CPU的电子装置中快速普及(常称为微控制(Microcontrollers))。
编辑本段基本结构
CPU包括运算逻辑部件、寄存器部件和控制部件等。
运算逻辑部件
运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。
寄存器部件
寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。
32位CPU的寄存器
通用寄存器又可分定点数和浮点数两类,它们用来保存指令中的寄存器操作数和操作结果。
通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。
通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。
专用寄存器是为了执行一些特殊操作所需用的寄存器。
控制寄存器通常用来指示机器执行的状态,或者保持某些指针,有处理状态寄存器、地址转换目录的基地址寄存器、特权状态寄存器、条件码寄存器、处理异常事故寄存器以及检错寄存器等。
有的时候,中央处理器中还有一些缓存,用来暂时存放一些数据指令,缓存越大,说明CPU的运算速度越快,目前市场上的中高端中央处理器都有2M左右的二级缓存,高端中央处理器有4M左右的二级缓存。
控制部件
控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。
其结构有两种:
一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。
微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。
中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。
简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。
逻辑硬布线控制器则完全是由随机逻辑组成。
指令译码后,控制器通过不同的逻辑门的组合,发出不同序列的控制时序信号,直接去执行一条指令中的各个操作。
编辑本段发展历史
计算机的发展主要表现在其核心部件——微处理器的发展上,每当一款新型的微处理器出现时,就会带动计算机系统的其他部件的相应发展,如计算机体系结构的进一步优化,存储器存取容量的不断增大、存取速度的不断提高,外围设备的不断改进以及新设备的不断出现等。
根据微处理器的字长和功能,可将其发展划分为以下几个阶段。
第1阶段
第1阶段(1971——1973年)是4位和8位低档微处理器时代,通常称为第1代,其典型产品是Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机。
基本特点是采用PMOS工艺,集成度低(4000个晶体管/片),系统结构和指令系统都比较简单,主要采用机器语言或简单的汇编语言,指令数目较少(20多条指令),基本指令周期为20~50μs,用于简单的控制场合。
Intel在1969年为日本计算机制造商Busicom的一项专案,着手开发第一款微处理器,为一系列可程式化计算机研发多款晶片。
最终,英特尔在1971年11月15日向全球市场推出4004微处理器,当年Intel4004处理器每颗售价为200美元。
4004是英特尔第一款微处理器,为日后开发系统智能功能以及个人电脑奠定发展基础,其晶体管数目约为2300颗。
翌年,Intel推出8008微处理器,其运算威力是4004的两倍。
RadioElectronics于1974年刊载一篇文章介绍一部采用8008的Mark-8装置,被公认是第一部家用电脑,在当时的标准来看,这部电脑在制造、维护、与运作方面都相当困难。
Intel8008晶体管数目约为3500颗。
第2阶段
第2阶段(1971——1977年)是8位中高档微处理器时代,通常称为第2代,其典型产品是Intel8080/8085、Motorola公司、Zilog公司的Z80等。
它们的特点是采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍(基本指令执行时间1~2μs),指令系统比较完善,具有典型的计算机体系结构和中断、DMA等控制功能。
软件方面除了汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期还出现了操作系统。
1974年,Intel推出8080处理器,并作为Altair个人电脑的运算核心,Altair在《星舰奇航》电视影集中是企业号太空船的目的地。
电脑迷当时可用395美元买到一组Altair的套件。
它在数个月内卖出数万套,成为史上第一款下订单后制造的机种。
Intel8080晶体管数目约为6千颗。
第3阶段
第3阶段(1978——1984年)是16位微处理器时代,通常称为第3代,其典型产品是Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000等微处理器。
其特点是采用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度(基本指令执行时间是0.5μs)都比第2代提高了一个数量级。
指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统。
这一时期著名微机产品有IBM公司的个人计算机。
1981年IBM公司推出的个人计算机采用8088CPU。
紧接着1982年又推出了扩展型的个人计算机IBMPC/XT,它对内存进行了扩充,并增加了一个硬磁盘驱动器。
80286(也被称为286)是英特尔首款能执行所有旧款处理器专属软件的处理器,这种软件相容性之后成为英特尔全系列微处理器的注册商标,在6年的销售期中,估计全球各地共安装了1500万部286个人电脑。
Intel80286处理器晶体管数目为13万4千颗。
1984年,IBM公司推出了以80286处理器为核心组成的16位增强型个人计算机IBMPC/AT。
由于IBM公司在发展个人计算机时采用了技术开放的策略,使个人计算机风靡世界。
第4阶段
第4阶段(1985——1992年)是32位微处理器时代,又称为第4代。
其典型产品是Intel公司的80386/80486,Motorola公司的M69030/68040等。
其特点是采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线。
每秒钟可完成600万条指令(MillionInstructionsPerSecond,MIPS)。
微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业。
同期,其他一些微处理器生产厂商(如AMD、TEXAS等)也推出了80386/80486系列的芯片。
Intel80386微处理器内含275,000个晶体管—比当初的4004多了100倍以上,这款32位元处理器首次支持多工任务设计,能同时执行多个程序。
Intel80386晶体管数目约为27万5千颗。
Intel80486处理器世代让电脑从命令列转型至点选式(pointtoclick)的图形化操作环境,开始能以大幅加快的速度进行桌面排版作业。
”Intel80486处理器率先内建数学协同处理器,由于能扮演中央处理器处理复杂数学运算,因此能加快整体运算的速度。
Intel80486晶体管数目为120万颗。
第5阶段
第5阶段(1993-2005年)是奔腾(pentium)系列微处理器时代,通常称为第5代。
典型产品是Intel公司的奔腾系列芯片及与之兼容的AMD的K6系列微处理器芯片。
内部采用了超标量指令流水线结构,并具有相互独立的指令和数据高速缓存。
随着MMX(MultiMediaeXtended)微处理器的出现,使微机的发展在网络化、多媒体化和智能化等方面跨上了更高的台阶。
1997年推出的PentiumII处理器结合了IntelMMX技术,能以极高的效率处理影片、音效、以及绘图资料,首次采用SingleEdgeContact(S.E.C)匣型封装,内建了高速快取记忆体。
这款晶片让电脑使用者撷取、编辑、以及透过网际网络和亲友分享数位相片、编辑与新增文字、音乐或制作家庭电影的转场效果、使用视讯电话以及透过标准电话线与网际网络传送影片,IntelPentiumII处理器晶体管数目为750万颗。
PentiumIII处理器加入70个新指令,加入网际网络串流SIMD延伸集称为MMX,能大幅提升先进影像、3D、串流音乐、影片、语音辨识等应用的性能,它能大幅提升网际网络的使用经验,让使用者能浏览逼真的线上博物馆与商店,以及下载高品质影片,Intel首次导入0.25微米技术,IntelPentiumIII晶体管数目约为950万颗。
2000年推出的Pentium4处理器内建了4200万个晶体管,以及采用0.18微米的电路,Pentium4初期推出版本的速度就高达1.5GHz,晶体管数目约为4200万颗,翌年8月,Pentium4处理理达到2GHz的里程碑。
2002年英特尔推出新款IntelPentium4处理器内含创新的Hyper-Threading(HT)超线程技术。
超线程技术打造出新等级的高性能桌上型电脑,能同时快速执行多项运算应用,或针对支持多重线程的软件带来更高的性能。
超线程技术让电脑性能增加25%。
除了为桌上型电脑使用者提供超线程技术外,英特尔也达成另一项电脑里程碑,就是推出运作频率达3.06GHz的Pentium4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超线程技术的IntelPentium4处理器频率达到3.2GHz。
第6阶段
第6阶段(2005年至今)是酷睿(core)系列微处理器时代,通常称为第6代。
“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。
早期的酷睿是基于笔记本处理器的。
酷睿2:
英文名称为Core2Duo,是是英特尔在2006年推出的新一代基于Core微架构的产品体系统称。
于2006年7月27日发布。
酷睿2是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。
其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。
酷睿2处理器的Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代英特尔架构。
最显著的变化在于在各个关键部分进行强化。
为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。
SNB(SandyBridge)是英特尔在2011年初发布的新一代处理器微架构,这一构架的最大意义莫过于重新定义了“整合平台”的概念,与处理器“无缝融合”的“核芯显卡”终结了“集成显卡”的时代。
这一创举得益于全新的32nm制造工艺。
由于SandyBridge构架下的处理器采用了比之前的45nm工艺更加先进的32nm制造工艺,理论上实现了CPU功耗的进一步降低,及其电路尺寸和性能的显著优化,这就为将整合图形核心(核芯显卡)与CPU封装在同一块基板上创造了有利条件。
此外,第二代酷睿还加入了全新的高清视频处理单元。
视频转解码速度的高与低跟处理器是有直接关系的,由于高清视频处理单元的加入,新一代酷睿处理器的视频处理时间比老款处理器至少提升了30%。
在2012年4月24日下午北京天文馆,intel正式发布了ivybridge(IVB)处理器。
22nmIvyBridge会将执行单元的数量翻一番,达到最多24个,自然会带来性能上的进一步跃进。
IvyBridge会加入对DX11的支持的集成显卡。
另外新加入的XHCIUSB3.0控制器则共享其中四条通道,从而提供最多四个USB3.0,从而支持原生USB3.0。
cpu的制作采用3D晶体管技术的CPU耗电量会减少一半。
编辑本段性能指标
主频
主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。
CPU的主频=外频×倍频系数。
主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。
在Intel的处理器产品中,也可以看到这样的例子:
1GHzItanium芯片能够表现得差不多跟2.66GHz至强(Xeon)/Opteron一样快,或是1.5GHzItanium2大约跟4GHzXeon/Opteron一样快。
CPU的运算速度还要看CPU的流水线、总线等各方面的性能指标。
外频
外频是CPU的基准频率,单位是MHz。
CPU的外频决定着整块主板的运行速度。
通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。
但对于服务器CPU来讲,超频是绝对不允许的。
前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈。
前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。
有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。
比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:
前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。
也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。
IA-32架构必须有三大重要的构件:
内存控制器Hub(MCH),I/O控制器Hub和PCIHub,像Intel很典型的芯片组Intel7501.Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。
但随着处理器性能不断提高同时给系统架构带来了很多问题。
而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMDOpteron处理器,灵活的HyperTransportI/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。
这样的话,前端总线(FSB)频率在AMDOpteron处理器就不知道从何谈起了。
AMD羿龙IIX4955黑盒
中央处理器(Intel)
倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。
在相同的外频下,倍频越高CPU的频率也越高。
但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。
这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应-CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。
一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Intel酷睿2核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,现在AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。
缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。
实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。
但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。
内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。
一般服务器CPU的L1缓存的容量通常在32-256KB。
L2 Cache(二级缓存)是C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中央处理器