CSY实验指南.docx
- 文档编号:27788595
- 上传时间:2023-07-05
- 格式:DOCX
- 页数:59
- 大小:778.16KB
CSY实验指南.docx
《CSY实验指南.docx》由会员分享,可在线阅读,更多相关《CSY实验指南.docx(59页珍藏版)》请在冰豆网上搜索。
CSY实验指南
前言
CSY2000系列传感器与检测技术实验台是本公司多年生产传感技术教学实验装置的基础上,为适应不同类别、不同层次的专业需要,最新推出的模块化的新产品。
其优点在于:
1、能适应不同专业的需要,不同专业可以有不同的菜单,本公司还可以为用户的特殊要求制作模板。
2、能适应不断发展的形势,作为信息拾取的工具,传感器发展很快,可以不断补充新型的传感器模板。
3、指导教师和学生自己可以开发与组织新实验,本公司可以提供空白的模板。
4、可以利用主控台的共用源用于学生课程设计、毕业设计和自制装置。
CSY2000系列传感器与检测技术实验台主要用于各大、中专院校及职业院校开设的“传感器原理与技术”“自动化检测技术”“非电量电测技术”“工业自动化仪表与控制”“机械量电测”等课程的实验教学。
CSY2000系列传感器与检测技术实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,希望通过实验帮助广大学生加强对书本知识的理解,并在实验的进行过程中,通过信号的拾取,转换,分析,掌握作为一个科技工作者应具有的基本的操作技能与动手能力。
本实验指导书,由于编写时间,水平所限,又是初次试用,难免有疏漏廖误之处,热切期望实验指导
老师与学生们,能提出宝贵的意见,谢谢。
实验目录
实验一金属箔式应变片――单臂电桥性能实验
实验二金属箔式应变片――半桥性能实验
实验三金属箔式应变片――全桥性能实验
实验四金属箔式应变片单臂、半桥、全桥性能比较实验
实验五金属箔式应变片――温度影响实验
实验六直流全桥的应用――电子秤实验
实验七交流全桥的应用――振动测量实验
实验八扩散硅压阻压力传感器的压力测量实验
实验九扩散硅压阻压力传感器差压测量实验*
实验十差动变压器的性能实验
实验十一激励频率对差动变压器特性的影响实验
实验十二差动变压器零点残余电压补偿实验
实验十三差动变压器的应用――振动测量实验
实验十四电容式传感器的位移特性实验
实验十五直流激励时霍尔式传感器的位移特性实验 电容传感器动态特性实验
实验十六交流激励时霍尔式传感器的位移特性实验
实验十七霍尔测速实验
实验十八磁电式转速传感器的测速实验 霍尔式传感器振动测量实验
实验十九用磁电式原理测量地震* 霍尔式传感器的应用――电子秤实验
实验二十压电式传感器振动实验
实验二十一电涡流传感器的位移特性实验
实验二十二被测体材质对电涡流传感器的特性影响实验
实验二十三被测体面积大小对电涡流式传感器的特性影响实验
实验二十四电涡流传感器测量振动实验
实验二十五电涡流测转速实验*
实验二十六光纤传感器的位移特性实验
实验二十七光电转速传感器的转速测量实验
实验二十八利用光电传感器测转速的其它方案*
实验二十九集成温度传感器的温度特性实验
实验三十铂电阻温度特性实验
实验三十一铜电阻温度特性实验 光纤传感器测量振动实验
实验三十二K型热电偶测温实验光纤传感器的测速实验
实验三十三E型热电偶测温实验
实验三十四热电偶冷端温度补偿实验*
实验三十五气敏传感器实验
实验三十六温度传感器实验 热电阻温度特性实验
实验三十七数据采集系统实验――静态举例
实验三十八数据采集系统实验--动态举例
实验三十九PSD位置传感器测定位移实验
实验四十PSD位置传感器测量振动*
实验四十一扭矩传感器的不同的信号传输方式*
实验四十二 超声波传感器测量距离实验
实验四十三超声波传感器的方位角测定实验*
实验四十四超声自动开闭门的实验*
实验四十五 CCD电荷耦合器体测定直径实验
实验四十六光学系统对CCD测径系统的影响*
实验四十七光栅位移传感器位移测量实验
备注:
带*号实验为思考实验,由学生自己动手组建。
实验一至实验四十三为普通型、增强型共用实验,实验四十四至实验五十三为增强型实验。
实验一金属箔式应变片――单臂电桥性能实验
一、实验目的:
了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:
电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:
ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压Uo1=EKε/4。
三、需用器件与单元:
应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:
1、
根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右
图1-1应变式传感器安装示意图
2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源(注意:
当Rw3、Rw4的位置一旦确定,就不能改变。
一直到做完实验三为止)。
3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器RW1,接上桥路电源±4V(从主控台引入)如图1-2所示。
检查接线无误后,合上主控台电源开关。
调节RW1,使数显表显示为零。
图1-2应变式传感器单臂电桥实验接线图
4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500g)砝码加完。
记下实验结果填入表1-1,关闭电源。
重量(g)
电压(mv)
5、根据表1-1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δf1=Δm/yF..S×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:
yF·S满量程输出平均值,此处为200g(或500g)。
五、思考题:
单臂电桥时,作为桥臂电阻应变片应选用:
(1)正(受拉)应变片
(2)负(受压)应变片(3)正、负应变片均可以。
实验二金属箔式应变片――半桥性能实验
一、实验目的:
比较半桥与单臂电桥的不同性能、了解其特点。
二、基本原理:
不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压UO2=EKε/2。
三、需用器件与单元:
同实验一。
四、实验步骤:
1、传感器安装同实验一。
做实验
(一)的步骤2,实验模板差动放大器调零。
2、
根据图1-3接线。
R1、R2为实验模板左上方的应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。
接入桥路电源±4V,调节电桥调零电位器RW1进行桥路调零,实验步骤3、4同实验一中4、5的步骤,将实验数据记入表1-2,计算灵敏度S2=U/W,非线性误差δf2。
若实验时无数值显示说明R2与R1为相同受力状态应变片,应更换另一个应变片。
图1-3应变式传感器半桥实验接线图
表1-2半桥测量时,输出电压与加负载重量值
重量
电压
五、思考题:
1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:
(1)对边
(2)邻边。
2、桥路(差动电桥)测量时存在非线性误差,是因为:
(1)电桥测量原理上存在非线性
(2)应变片应变效应是非线性的(3)调零值不是真正为零。
实验三金属箔式应变片――全桥性能实验
一、实验目的:
了解全桥测量电路的优点。
二、基本原理:
全桥测量电路中,将受力性质相同的两应变片接入电桥对边,当应变片初始阻值:
R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三、需用器件和单元:
同实验一
四、实验步骤:
1、传感器安装同实验一。
2、
根据图1-4接线,实验方法与实验二相同。
将实验结果填入表1-3;进行灵敏度和非线性误差计算。
1-4全桥性能实验接线图
表1-3全桥输出电压与加负载重量值
重量
电压
五、思考题:
1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:
(1)可以
(2)不可以。
2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻。
F
F
R1
R3
R2
R1
R2
R3
R4
R4
F
F
图1-5应变式传感器受拉时传感器圆周面展开图
实验四金属箔式应变片单臂、半桥、全桥性能比较
一、实验目的:
比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、实验步骤:
根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。
阐述理由(注意:
实验一、二、三中的放大器增益必须相同)。
实验五金属箔式应变片的温度影响实验
一、实验目的:
了解温度对应变片测试系统的影响。
二、基本原理:
电阻应变片的温度影响,主要来自两个方面。
敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致会产生附加应变。
因此当温度变化时,在被测体受力状态不变时,输出会有变化。
三、需用器件与单元:
应变传感器实验模板、数显表单元、直流源、加热器(已贴在应变片底部)
四、实验步骤:
1、保持实验四的实验结果。
2、放200g砝码加于砝码盘上,在数显表上读取某一整数值UO1。
3、
将5V直流稳压电源接于实验模板的加热器插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uot,Uot-U01即为温度变化的影响。
计算这一温度变化产生的相对误差
五、思考题
1、金属箔式应变片温度影响有哪些消除方法?
2、应变式传感器可否用于测量温度?
实验六直流全桥的应用――电子秤实验
一、实验目的:
了解应变直流全桥的应用及电路的标定。
二、基本原理:
电子秤实验原理为实验三,全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量纲(g)即成为一台原始电子秤。
三、需用器件与单元:
应变式传感器实验模板、应变式传感器、砝码
四、实验步骤:
1、按实验一中2的步骤,将差动放大器调零,按图1-4全桥接线,合上主控台电源开关,调节电桥平衡电位RW1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器RW3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。
3、拿去托盘上的所有砝码,调节电位器RW4(零位调节)使数显表显示为0.0000V。
4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量纲g,就可以称重。
成为一台原始的电子秤。
5、把砝码依次放在托盘上,填入下表1-4。
重量(g)
电压(mv)
6、根据上表,计算误差与非线性误差。
实验七交流全桥的应用――振动测量实验
一、实验目的:
了解利用交流电桥测量动态应变参数的原理与方法。
二、基本原理:
对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器或用交流电压表读得。
三、需用器件与单元:
音频振荡器、低频振荡器、万用表(自备)、应变式传感器实验模板、相敏检波器模板、双综示波器、振动源。
四、实验步骤:
1、模块上的传感器不用,改为振动梁的应变片,即台面上的应变输出。
2、将台面三源板上的应变插座用连接线插入应变传感器实验模板上。
因振动梁上的四片应变片已组成全桥,引出线为四芯线,因此可直接接入实验模板面上已联成电桥的四个插孔上。
接线时应注意连接线上每个插头的意义,对角线的阻值为350Ω,若二组对角线阻值均为350Ω则接法正确(万用表测量)。
3、根据图1-6,接好交流电桥调平衡电路及系统,R8、Rw1、C、Rw2为交流电桥调平衡网络。
检查接线无误后,合上主控台电源开关,将音频振荡器的频率调节到1KHz左右,幅度调节到10Vp-p(频率可用数显表Fin监测,幅度用示波器监测)
图1-6应变片振动测量实验接线图
4、将低频振荡器输出接入振动台激励源插孔,调低频输出幅度和频率使振动台(圆盘)明显感到振动。
5、固定低频振荡器幅度钮旋位置不变,低频输出端接入数显单元的Fin,把数显表的切换开关打到频率档监测低频频率,调低频频率,用示波器读出频率改变时低通滤波器输出Vo的电压峰-峰值,填入表1-5。
f(Hz)
Vo(p-p)
从实验数据得振动梁的自振频率为HZ。
五、思考题:
1、在交流电桥测量中,对音频振荡器频率和被测梁振动频率之间有什么要求?
2、请归纳直流电桥和交流电桥的特点?
小结:
电阻应变式传感器从1938年开始使用到目前,仍然是当前称重测力的主要工具,电阻应变式传感器最高精度可达万分之一甚至更高,电阻应变片、丝除直接用以测量机械、仪器及工程结构等的应变外,主要是与种种形式的弹性体相配合,组成各种传感器和测试系统。
如称重、压力、扭矩、位移、加速度等传感器,常见的应用场合如各种商用电子称、皮带称、吊钩称、高炉配料系统、汽车衡、轨道衡等。
附移相器和相敏检波器电路原理图
图1-7 移相器电路原理图
图1-8 相敏检波器的电路原理图
实验八压阻式压力传感器的压力测量实验
一、实验目的:
了解扩散硅压阻式压力传感器测量压力的原理和方法。
二、基本原理:
扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。
三、需用器件与单元:
压力源(已在主控箱)、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源±4V、±15V。
四、实验步骤:
1、根据图2-1连接管路和电路,主控箱内的气源部分,压缩泵、贮气箱、流量计已接好。
将标准压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用双指按住气源插座边缘往内压,则可轻松拉出)。
其余两根黑色导管分别与标准表和压力传感器接通。
这里选用的差压传感器两只气咀中,一只为高压咀,另一只为低压咀。
当高压咀接入正压力时,输出为正,反之为负,若输出负时可调换气咀。
本实验模板连接见图2-2,压力传感器有4端:
1端线接地线,2端为U0+,3端接+4V电源,4端为Uo-。
1、2、3、4端顺序排列见图2-2。
图2-1 压阻式压力传感器测量系统
图2-2压力传感器压力实验接线图
2、实验模板上RW2用于调节零位,RW1可调放大倍数,按图2-2接线,模板的放大器输出Vo引到主控箱数显表的Vi插座。
将显示选择开关拨到2V档,反复调节RW2(RW1旋到满度的确1/3)使数显表显示为零。
3、先松开流量计下端进气口调气阀的旋钮,开通流量计。
4、合上主控箱上的气源开关K3,启动压缩泵,此时可看到流量计中的滚珠浮子在向上浮起悬于玻璃管中。
5、逐步关小流量计旋钮,使标准压力表指示某一刻度,观察数显表显示电压的正、负,若为负值则对调传感器气咀接法。
6、仔细地逐步由小到大调节流量计旋钮,使压力显示在4-14KP之间每上升1KP分别读取压力表读数,记下相应的数显表值列于表(2-1)
表(2-1)压力传感器输出电压与输入压力值
P(KP)
Vo(p-p)
7、计算本系统的灵敏度和非线性误差。
8、如果本实验装置要成为一个压力计,则必须对电路进行标定,方法如下:
输入4KPa气压,调节Rw2(低限调节),使数显表显示0.400V,当输入12KPa气压,调节Rw1(高限调节)使数显表显示1.200V这个过程反复调节直到足够的精度即可。
五、思考题:
利用本系统如何进行真空度测量?
实验九扩散硅压阻式压力传感器差压测量*
一、实验目的:
了解利用压阻式压力传感器进行差压测量的方法。
二、基本原理:
压阻式压力传感器的硅膜片受到两个压力P1和P2作用时由于它们对膜片产生的应力正好相反,因此作用在压力膜片上是ΔP=P1-P2,从而可以进行差压测量。
三、需用器件与单元:
实验九所用器件和单元、压力气囊。
四、实验步骤:
请学员们自拟一个差压测量的方法。
实验十差动变压器的性能实验
一、实验目的:
了解差动变压器的工作原理和特性。
二、基本原理:
差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。
当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
三、需用器件与单元:
差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、万用表。
四、实验步骤:
1、根据图3-1,将差动变压器装在差动变压器实验模板上。
图3-1差动变压器电容传感器安装示意图
2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:
X轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:
设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
图中
(1)、
(2)、(3)、(4)为实验模块中的插孔编号。
3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。
图3-2双踪示波器与差动变压器连结示意图
4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。
根据表3-1画出Vop-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。
表(3-1)差动变压器位移X值与输出电压数据表
V(mv)
X(mm)
五、思考题:
1、用差动变压器测量较高频率的振幅,例如1KHZ的振动幅值,可以吗?
差动变压器测量频率的上限受什么影响?
2、试分析差动变压器与一般电源变压器的异同?
3、移相器的电路原理图如图1-7,试分析其工作原理?
4、相敏检波器的电路原理图如图1-8,试分析其工作原理?
实验十一激励频率对差动变压器特性的影响
一、实验目的:
了解初级线圈激励频率对差动变压器输出性能的影响。
二、
基本原理:
差动变压器的输出电压的有效值可以近似用关系式:
表示,式中LP、RP为初级线圈电感和损耗电阻,Ui、ω为激励电压和频率,M1、M2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若RP2>ω2LP2,则输出电压Uo受频率变动影响较大,且灵敏度较低,只有当ω2LP2>>RP2时输出Uo与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。
三、需用器件与单元:
与实验十相同。
四、实验步骤:
1、差动变压器安装同实验十。
接线图同实验十。
2、选择音频信号输出频率为1KHZ,Vp-p=2V。
从LV输出,(可用主控箱的数显表频率档显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节Rw1、Rw2使输出变得更小,
3、用示波器监视第二通道,旋动测微头,向左(或右)旋到离中心位置2.50mm处,有较大的输出。
将测试结果记入表3-2。
4、分别改变激励频率从1KHZ――9KHZ,幅值不变,将测试结果记入表3-2
表3-2不同激励频率时输出电压的关系。
F(Hz)
1KHz
2KHz
3KHz
4KHz
5KHz
6KHz
7KHz
8KHz
9KHz
V0(v)
5、作出幅频特性曲线。
实验十二差动变压器零点残余电压补偿实验
一、实验目的:
了解差动变压器零点残余电压补偿方法。
二、基本原理:
由于差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B-H特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。
称其为零点残余电压。
三、需用器件与单元:
音频振荡器、测微头、差动变压器、差动变压器实验模板、示波器。
四、实验步骤:
1、
按图3-3接线,音频信号源从LV插口输出,实验模板R1、C1、RW1、RW2为电桥单元中调平衡网络。
图3-3零点残余电压补偿电路
2、利用示波器调整音频振荡器输出为2V峰-峰值。
3、调整测微头,使差动放大器输
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CSY 实验 指南