北师大初中八年级数学上册《第五章二元一次方程组》教案.docx
- 文档编号:2772296
- 上传时间:2022-11-15
- 格式:DOCX
- 页数:21
- 大小:93.74KB
北师大初中八年级数学上册《第五章二元一次方程组》教案.docx
《北师大初中八年级数学上册《第五章二元一次方程组》教案.docx》由会员分享,可在线阅读,更多相关《北师大初中八年级数学上册《第五章二元一次方程组》教案.docx(21页珍藏版)》请在冰豆网上搜索。
北师大初中八年级数学上册《第五章二元一次方程组》教案
第五章二元一次方程组
第一课时
认识二元一次方程组
教学目标
1.了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某
个二元一次方程组的解。
2.通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
3.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,
重点:
二元一次方程组的含义
难点:
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
教学过程
一、引入、实物投影(P181图)
1、师:
在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:
“累死我了”,小马说:
“你还累,这么大的个,才比我多驮2个”老牛气不过地说:
“哼,我从你背上拿来一个,我的包裹就是你的2倍!
”,小马天真而不信地说:
“真的?
!
”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:
x+1=2(y-1)
师:
同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?
含未知数的项的次数是多少?
(含有两个未知数,并且所含未知数项的次数是1)
师:
含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:
这个定义有两个地方要注意
①、含有两个未知数,②、含未知数的次数是一次
练习:
(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-
=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、议一议、
师:
上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?
y呢?
(两个方程中x的表示老牛驮的包裹数,y表示小马的包裹数,x、y的含义分别相同。
)
师:
由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如:
2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2适合方程x+y=8吗?
x=5,y=3呢?
x=4,y=4呢?
你还能找到其他x,y值适合x+y=8方程吗?
2、X=5,y=3适合方程5x+3y=34吗?
x=2,y=8呢?
3、你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解
x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5
y=2y=3
也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,
y=3
二元一次方程各个方程的公共解,叫做二元一次方程组的解。
四、随堂练习、(P184)
五、小结:
1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
6.作业
P188习题7.1。
第二课时
求解二元一次方程组
教学目标
1.会用代入消元法解二元一次方程组
2.了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归
3.利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想
重点:
用代入法解二元一次方程组,基本方法是消元化二元为一元.
难点:
用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.
教学过程
一、引入
上节课我们的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了二元一次方程组x-y=2①到底谁的包裹多呢?
x+1=2(y-1)②
这就需要解这个二元一次方程组.
二、一元一次方程我们会解,二元一次方程组如何解呢?
我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:
由①得y=x-2
由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.
三、做一做
我们知道了解二元一次方程组的一种思路,下面我们来做一做
例1、
解方程组3x+2y=8①
x=
②
例2、解方程组2x+3y=16①
x+4y=13②
教师先分析:
此题不同于例1,(即用含有一个未知数的代数式表示另一个未知数),②式不能直接代入①,那么我们应当怎样处理才能转化为例1②式这样的形式呢?
请同学回答
(应先对②式进行恒等变化,把它化为例1中②式那样的形式.)
分小组合作完成上述例题,请两个小组的代表上黑板上来板演
四、议一议、
上面解方程组的基本思路是什么?
主要步骤有哪些?
上面解方程组的基本思路是“消元”——把“二元”变为“一元”。
主要步骤是:
①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,②将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式。
③解这个一元一次方程。
④把求得的一次方程的解代入方程中,求得另一个未知数值,组成方程组的解。
这种解方程组的方法称为代入消元法。
简称代入法。
五、练一练、
1、已知x+3y-6=0,用含x的代数式表示y为,用含y的代数式表示x为
.
2、书本P188随堂练习
六、小结、
1、今天我们学习了二元一次方程组的解法,你有什么体会?
2、解二元一次方程组的思路是消元,把二元变为一元
3、解题步骤概括为三步即:
①变、②代、③解、
4、方程组的解的表示方法,应用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?
y=?
5、由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方程中去,否则会出现一个恒等式。
七、作业、
1、已知x=1是方程组ax+by=2的解,则a、b的值是多少?
y=1x-by=3
2、若方程组4x+3y=1的解x与y相等,则a的值是多少?
ax+(a-1)y=3
第三课时
求解二元一次方程组
教学目标:
1.了解并会用加减消元法解二元一次方程组。
2.了解解二元一次方程组的消元思想,体会数学中“化未知为已知”的化归思想。
3.初步体验二元一次方程组解法的多样性和选择性。
教学重点:
1.会用加减消元法解二元一次方程组。
2.会用加减消元法解二元一次方程组。
教学难点:
掌握解二元一次方程组的“消元”思想。
教学过程:
1、创设情境:
怎样解下面的二元一次方程组呢?
分析:
观察方程组中的两个方程,未知数y的系数互为相反数,把这两个方程两边分别相加,就可以消去未知数y,得到一个一元一次方程;
(3x+5y)+(2x-5y)=21+(-11)
①左边+②左边=①左边+②左边
3X+5y+2x-5y=10
5x+0y=10
5x=10
2、探索尝试:
参考小丽的思路,怎样解下面的二元一次方程组呢?
例1解下列方程组.
分析:
观察方程组中的两个方程,未知数x的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x,同样得到一个一元一次方程.
3.随堂练习:
指出下列方程组求解过程中有错误步骤,并给予订正:
解:
①-②,得解 ①-②,得
-2x=122x=4-4,
x=-6x=0
4.议一议:
上面这些方程组的特点是什么?
解这类方程组基本思路是什么?
主要步骤有哪些?
这些方程组的特点是同一个未知数的系数相同或互为相反数
这类方程组基本思路:
加减消元----二元----一元
主要步骤:
加减----消去一个元求解----分别求出两个未知数的值写解----写出方程组的解
5.做一做
例2.用加减法解下列各方程组
分析:
(1)用加减消元法解方程组时,若哪个未知数系数的绝对值正好相等,就可先消哪个未知数;若两个未知数的系数绝对值均不等,则可选定一个未知数,通过变形使其绝对值相等,再进行消元.
(2)运用加减消元法解方程组的条件是方程组中两个方程的某个未知数的系数的绝对值相等,当方程组中两方程不具备这种特点时,必须用等式性质2来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值已经相等的新的方程组,从而为加减消元法解方程组创造条件.
说明:
1.加减消元法的依据是等式性质1,即在一个方程左右两边分别加上或减去另一个方程的左右两边,所得的结果仍是等式.经过这样的运算,其中一个未知数被消去了,原来的“二元”化为“一元”,转化为一元一次方程,从而可求出原方程组的解来.
2.对于不是标准的二元一次方程组,可先通过去分母或去括号,将其变为标准的二元一次方程组后再消元
5.试一试:
运用加减消元法解下列方程组:
(3)
6.探索与思考:
在解方程组
时,小张正确的解
小李由于看错了方程组中的C得到方程组的解为
,试求方程组中的a、b、c的值。
7.小结:
加减消元法解方程组基本思路是什么?
主要步骤有哪些?
加减消元法解方程组基本思路:
加减消元----二元---一元
主要步骤有:
变形----同一个未知数的系数相同或互为相反数
加减----消去一个元
求解----分别求出两个未知数的值
写解----写出方程组的解
8.作业
第四课时
鸡兔同笼
教学目标
1.使学生初步掌握列二元一次方程组解应用题
2.通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力。
教学重点:
根据等量关系列二元一次方程组解应用题。
教学难点:
根据题意找出等量关系,列出方程。
教学过程
一、我们伟大祖国具有五千年的文明史,在历史的长河中,为科学知识的创新和发展作出了巨大的贡献,特别在数学领域有[九章算术]、[孙子算经]等古代名著流传于世,普及趋于民众,许多问题浅显易懂,趣味性强,如[九章算术]下卷第三题目“雉兔同笼”等,漂洋过海传到了日本等国,对中国古代文明史的传播起了很大作用。
“雉兔同笼”题为:
“今有雉兔同笼,上有三十五关,下有九十四足,问雉兔各几何?
”
问题1、“上有三十五头”指的意思是什么?
“下有九十四足”呢?
问题2、你能根据问题1中的的数量关系列出方程吗?
并能解决这个有趣的问题吗?
(分小组进行讨论,然后请两个小组的代表到黑板上板演)
这个古老的数学问题,用今天的方程解决,体现了古为今用的原则,为后人理解了数学的过去和现在,当代的著名的数学家陈省生教授在说起“鸡兔同笼”时,曾另有一番别有风趣的延伸:
“全体鸡兔立正,兔子提起前面的两只脚,请问现在共有几只脚?
”……
二、中国是一个伟大的四大文明古国,像这样浅显有趣的数学题目还有很多,我们的书上就提供了这样的一个例题
例1、以绳测井,若将绳三折测之,绳多五尺,若将绳四折测之,绳多一尺,绳长、井深各几何?
接下来老师看一下,那位同学的古文水平好,那位同学能自告奋勇地解释一下,这段古文的意思?
(用绳子测量水井的深度,如果将绳子折成三等分,一份绳子长比井深多5尺;如果将绳折成四等份,一份绳
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五章二元一次方程组 北师大 初中 八年 级数 上册 第五 二元 一次 方程组 教案