春 作业 实验1常微分方程.docx
- 文档编号:27709656
- 上传时间:2023-07-04
- 格式:DOCX
- 页数:10
- 大小:172.26KB
春 作业 实验1常微分方程.docx
《春 作业 实验1常微分方程.docx》由会员分享,可在线阅读,更多相关《春 作业 实验1常微分方程.docx(10页珍藏版)》请在冰豆网上搜索。
春作业实验1常微分方程
1、分别用Euler法与ode45解下列常微分方程并与解析解比较:
(1)
function[t,y]=euler(f,ts,y0,h)
t=ts
(1):
h:
ts
(2);
y
(1)=y0;
fori=1:
length(t)-1
y(i+1)=y(i)+h*f(t(i),y(i));
end
t=t';
y=y';
end
f=@(t,y)t+y;
[t1,y1]=euler(f,[0,3],1,0、05);
[t2,y2]=ode45(f,[0,3],1);
plot(t1,y1,'、-',t2,y2,'ro')
holdon
y3=dsolve('Dy=x+y','y(0)=1','x')
ezplot(y3,[0,3])
holdoff
legend('euler','ode45','解析解');
(2)
f=@(t,x)[2*x
(2);5*x
(2)+3*x
(1)+45*exp(2*t)];
[t1,y1]=ode45(f,[0,2],[2,1]);
plot(t1,y1)
2.求一通过原点的曲线,它在
处的切线斜率等于
若
上限增为1、58,1、60会发生什么?
functiondy=odefun_2(x,y)
dy=2*x+y^2;
dy=dy(:
);
end
[t1,y]=ode45('odefun_2',[0,1、58],0)
plot(t1,y);
[t2,y]=ode45('odefun_2',[0,1、60],0)
plot(t2,y);
3、求解刚性方程组:
functionDy=fun(t,y)
Dy=zeros(2,1);
Dy
(1)=-1000、25*y
(1)+999、75*y
(2)+0、5;
Dy
(2)=999、75*y
(1)-1000、25*y
(2)+0、5;
[t,y]=ode15s('fun',[0,5],[1,-1]);
plot(t,y(:
1),'o',t,y(:
2),'k-','LineWidth',2);
4、(广告效应)某公司生产一种耐用消费品,市场占有率为5%时开始做广告,一段时间的市场跟踪调查后,该公司发现:
单位时间内购买人口百分比的相对增长率与当时还没有买的百分比成正比,且估得此比例系数为0、5。
(1)建立该问题的数学模型,并将解析解与数值解,并作以比较;
y’=0、5(1-y)
y=desolve('Dy=0、5-0、5*y','y(0)=0、05')
odefun=@(t,y)0、5-0、5*y;
[t1,y1]=ode45(odefun,[0,10],0、05);
t2=0:
0、1:
10;
y2=1-(19*exp(-t2/2))/20;
plot(t1,y1,'o',t2,y2,'k');
(2)厂家问:
要做多少时间广告,可使市场购买率达到80%?
1-(19*exp(-t/2))/20=0、8
5、(肿瘤生长)肿瘤大小V生长的速率与V的a次方成正比,其中a为形状参数,0≤a≤1;而其比例系数K随时间减小,减小速率又与当时的K值成正比,比例系数为环境参数b。
设某肿瘤参数a=1,b=0、1,K的初始值为2,V的初始值为1。
问
(1)此肿瘤生长不会超过多大?
k’=-bk,v’=k*v^a,得k’=-0、1k,v’=kv,且k(0)=2,v(0)=1,
[k,v]=dsolve('Dk=-0、1*k','Dv=k*v','k(0)=2','v(0)=1','t');
t=0:
0、1:
100;
v=exp(20)*exp(-20*exp(-t/10));
plot(t,v);
(2)过多长时间肿瘤大小翻一倍?
exp(20)*exp(-20*exp(-t/10))=2
(3)何时肿瘤生长速率由递增转为递减?
v’与v的关系为v’=2*exp(20-t/10)*exp(-20*exp(-t/10));
t1=0:
0、1:
100;
v1=2*exp(20-20-t1/10)、*exp(-20*exp(-t1/10));
plot(t1,v1)
6、(生态系统的振荡现象)第一次世界大战中,因为战争很少捕鱼,按理战后应能捕到更多的鱼才就是。
可就是大战后,在地中海却捕不到鲨鱼,因而渔民大惑不解。
令x1为鱼饵的数量,x2为鲨鱼的数量,t为时间。
常微分方程组为
式中a1,a2,b1,b2都就是正常数。
第一式鱼饵x1的增长速度大体上与x1成正比,即按a1x1比率增加,而被鲨鱼吃掉的部分按b1x1x2的比率减少;第二式中鲨鱼的增长速度由于生存竞争的自然死亡或互相咬食按a2x2的比率减少,但又根据鱼饵的量的变化按b1x1x2的比率增加。
对a1=3,b1=2,a2=2、5,b2=1,x1(0)=x2(0)=1求解。
画出解曲线图与相轨线图,可以观察
到鱼饵与鲨鱼数量的周期振荡现象。
代入a1=3,b1=2,a2=2、5,b2=1,x1(0)=x2(0)=1,x1’=3x1-2x1x2,x2’=-2、5x2+x1x2;
functionDx=fun(t,x)
Dx=zeros(2,1);
Dx
(1)=x
(1)-2*x
(1)*x
(2);
Dx
(2)=-2、5*x
(2)+x
(1)*x
(2);
f=f(:
);
[t,x]=ode15s('fun',[0,10],[1,1]);
plot(t,x);
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 作业 实验1常微分方程 实验 微分方程