最新北师大版八年级数学上册单元测试《第3章 位置与坐标》解析版.docx
- 文档编号:27675213
- 上传时间:2023-07-03
- 格式:DOCX
- 页数:30
- 大小:203.20KB
最新北师大版八年级数学上册单元测试《第3章 位置与坐标》解析版.docx
《最新北师大版八年级数学上册单元测试《第3章 位置与坐标》解析版.docx》由会员分享,可在线阅读,更多相关《最新北师大版八年级数学上册单元测试《第3章 位置与坐标》解析版.docx(30页珍藏版)》请在冰豆网上搜索。
最新北师大版八年级数学上册单元测试《第3章位置与坐标》解析版
新北师大版八年级数学上册单元测试《第3章位置与坐标》
一、选择题(共17小题)
1.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( )
A.(﹣2,﹣3)B.(﹣2,6)C.(1,3)D.(﹣2,1)
2.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是( )
A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)
3.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)
4.在平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O、A的对应点分别为点O1、A1.若点O(0,0),A(1,4),则点O1、A1的坐标分别是( )
A.(0,0),(1,4)B.(0,0),(3,4)C.(﹣2,0),(1,4)D.(﹣2,0),(﹣1,4)
5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是( )
A.(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)
6.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为( )
A.4B.8C.16D.8
7.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为( )
A.(4,3)B.(2,4)C.(3,1)D.(2,5)
8.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2
)B.(3,3
)C.(4,3
)D.(3,2
)
9.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )
A.(2,﹣1)B.(2,3)C.(0,1)D.(4,1)
10.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是( )
A.(1,2)B.(3,0)C.(3,4)D.(5,2)
11.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
12.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是( )
A.(1,3)B.(2,2)C.(2,4)D.(3,3)
13.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)
14.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )
A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)
15.线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为( )
A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)
16.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为( )
A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)
17.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( )
A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)
二、填空题(共13小题)
18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为 .
19.已知线段AB的A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB平移后得到点A的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标是 .
20.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是 .
21.将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为 .
22.如图,点P(﹣3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为 .
23.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是 .
B、比较大小:
8cos31°
(填“>”,“=”或“<”)
24.将点A(2,1)向上平移3个单位长度得到点B的坐标是 .
25.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是 .
26.如图,在直角坐标系中,点A的坐标为(﹣1,2),点C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为 .
27.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A落在A1(0,﹣1),点B落在点B1,则点B1的坐标为 .
28.如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为 .
29.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是 ,A1的坐标是 .
30.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为 .
第3章位置与坐标
参考答案与试题解析
一、选择题(共17小题)
1.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( )
A.(﹣2,﹣3)B.(﹣2,6)C.(1,3)D.(﹣2,1)
【考点】坐标与图形变化-平移.
【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.
【解答】解:
根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1,
故点A′的坐标是(1,3).
故选:
C.
【点评】此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.
2.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是( )
A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)
【考点】坐标与图形变化-平移.
【专题】推理填空题.
【分析】四边形ABCD与点A平移相同,据此即可得到点A′的坐标.
【解答】解:
四边形ABCD先向左平移3个单位,再向上平移2个单位,
因此点A也先向左平移3个单位,再向上平移2个单位,
由图可知,A′坐标为(0,1).
故选:
B.
【点评】本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.
3.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)
【考点】坐标与图形变化-平移.
【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.
【解答】解:
∵点P(﹣2,1)向右平移3个单位长度,
∴点P′的横坐标为﹣2+3=1,
∵向上平移4个单位长度,
∴点P′的纵坐标为1+4=5,
∴点P′的坐标为(1,5).
故选B.
【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
4.在平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O、A的对应点分别为点O1、A1.若点O(0,0),A(1,4),则点O1、A1的坐标分别是( )
A.(0,0),(1,4)B.(0,0),(3,4)C.(﹣2,0),(1,4)D.(﹣2,0),(﹣1,4)
【考点】坐标与图形变化-平移.
【分析】根据向左平移,横坐标减,纵坐标不变求出点O1、A1的坐标即可得解.
【解答】解:
∵线段OA向左平移2个单位,点O(0,0),A(1,4),
∴点O1、A1的坐标分别是(﹣2,0),(﹣1,4).
故选D.
【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是( )
A.(﹣3,﹣2)B.(3,2)C.(2,﹣3)D.(3,﹣2)
【考点】坐标与图形变化-对称.
【分析】根据直线y=x是第一、三象限的角平分线,和点P的坐标结合图形得到答案.
【解答】解:
点P关于直线y=x对称点为点Q,
作AP∥x轴交y=x于A,
∵y=x是第一、三象限的角平分线,
∴点A的坐标为(2,2),
∵AP=AQ,
∴点Q的坐标为(2,﹣3)
故选:
C.
【点评】本题考查的是坐标与图形的变换,掌握轴对称的性质是解题的关键,注意角平分线的性质的应用.
6.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为( )
A.4B.8C.16D.8
【考点】坐标与图形变化-平移;一次函数图象上点的坐标特征.
【分析】根据题意,线段BC扫过的面积应为一平行四边形的面积,其高是AC的长,底是点C平移的路程.求当点C落在直线y=2x﹣6上时的横坐标即可.
【解答】解:
如图所示.
∵点A、B的坐标分别为(1,0)、(4,0),
∴AB=3.
∵∠CAB=90°,BC=5,
∴AC=4.
∴A′C′=4.
∵点C′在直线y=2x﹣6上,
∴2x﹣6=4,解得x=5.
即OA′=5.
∴CC′=5﹣1=4.
∴S▱BCC′B′=4×4=16(面积单位).
即线段BC扫过的面积为16面积单位.
故选:
C.
【点评】此题考查平移的性质及一次函数的综合应用,解决本题的关键是明确线段BC扫过的面积应为一平行四边形的面积.
7.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为( )
A.(4,3)B.(2,4)C.(3,1)D.(2,5)
【考点】坐标与图形变化-平移.
【分析】根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.
【解答】解:
由坐标系可得A(﹣2,6),将△ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(﹣2+4,6﹣1),
即(2,5),
故选:
D.
【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.
8.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2
)B.(3,3
)C.(4,3
)D.(3,2
)
【考点】坐标与图形变化-平移;等边三角形的性质.
【分析】作AM⊥x轴于点M.根据等边三角形的性质得出OA=OB=2,∠AOB=60°,在直角△OAM中利用含30°角的直角三角形的性质求出OM=
OA=1,AM=
OM=
,则A(1,
),直线OA的解析式为y=
x,将x=3代入,求出y=3
,那么A′(3,3
),由一对对应点A与A′的坐标求出平移规律,再根据此平移规律即可求出点B′的坐标.
【解答】解:
如图,作AM⊥x轴于点M.
∵正三角形OAB的顶点B的坐标为(2,0),
∴OA=OB=2,∠AOB=60°,
∴OM=
OA=1,AM=
OM=
,
∴A(1,
),
∴直线OA的解析式为y=
x,
∴当x=3时,y=3
,
∴A′(3,3
),
∴将点A向右平移2个单位,再向上平移2
个单位后可得A′,
∴将点B(2,0)向右平移2个单位,再向上平移2
个单位后可得B′,
∴点B′的坐标为(4,2
),
故选A.
【点评】本题考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
9.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为( )
A.(2,﹣1)B.(2,3)C.(0,1)D.(4,1)
【考点】坐标与图形变化-平移.
【分析】将点M(2,1)向下平移2个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点N的坐标.
【解答】解:
将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为(2,1﹣2),即(2,﹣1).
故选A.
【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:
横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
10.(2015•大连)在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是( )
A.(1,2)B.(3,0)C.(3,4)D.(5,2)
【考点】坐标与图形变化-平移.
【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标.
【解答】解:
将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).
故选D.
【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:
横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
11.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
【考点】坐标与图形变化-平移.
【分析】先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.
【解答】解:
点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为(1,﹣3),
故点在第四象限.
故选D.
【点评】本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.
12.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是( )
A.(1,3)B.(2,2)C.(2,4)D.(3,3)
【考点】坐标与图形变化-平移.
【专题】动点型.
【分析】根据向上平移,横坐标不变,纵坐标加解答.
【解答】解:
∵点(2,3)向上平移1个单位,
∴所得到的点的坐标是(2,4).
故选:
C.
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.
13.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)
【考点】坐标与图形变化-平移.
【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.
【解答】解:
根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).
故选A.
【点评】此题考查了平移时,点的坐标变化规律:
横坐标右移加,左移减;纵坐标上移加,下移减.
14.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )
A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)
【考点】坐标与图形变化-平移.
【专题】常规题型.
【分析】根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.
【解答】解:
∵点A(﹣1,4)的对应点为C(4,7),
∴平移规律为向右5个单位,向上3个单位,
∵点B(﹣4,﹣1),
∴点D的坐标为(1,2).
故选:
A.
【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:
横坐标右移加,左移减;纵坐标上移加,下移减.
15.线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为( )
A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)
【考点】坐标与图形变化-平移.
【分析】首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.
【解答】解:
∵点P(﹣1,4)的对应点为E(4,7),
∴E点是P点横坐标+5,纵坐标+3得到的,
∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+3),
即(2,4).
故选:
C.
【点评】此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.
16.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为( )
A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)
【考点】坐标与图形变化-平移;坐标与图形变化-对称.
【专题】几何变换.
【分析】先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.
【解答】解:
∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,
∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).
故选:
B.
【点评】本题考查了坐标与图形变化﹣旋转:
图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:
30°,45°,60°,90°,180°.
17.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( )
A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)
【考点】坐标与图形变化-平移.
【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.
【解答】解:
在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).
故选:
D.
【点评】本题考查了坐标与图形变化﹣平移:
在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:
横坐标,右移加,左移减;纵坐标,上移加,下移减.
二、填空题(共13小题)
18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为 (﹣2,﹣3) .
【考点】关于x轴、y轴对称的点的坐标.
【分析】根据关于y轴对称点的坐标特点:
横坐标互为相反数,纵坐标不变可得答案.
【解答】解:
点A(2,﹣3)关于y轴对称的点的坐标为(﹣2,﹣3),
故答案为:
(﹣2,﹣3).
【点评】此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.
19.已知线段AB的A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB平移后得到点A的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标是 (0,﹣8) .
【考点】坐标与图形变化-平移.
【分析】根据点A、A′的坐标确定出平移规律,然后求解即可.
【解答】解:
∵点A(3,2)的对应点A′是(5,﹣1),
∴平移规律是横坐标加2,纵坐标减3,
∴点B(﹣2,﹣5)的(0,﹣8).
故答案为:
(0,﹣8).
【点评】本题考查了坐标与图形变化﹣平移,确定出平移规律是解题的关键.
20.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是 (3,3) .
【考点】坐标与图形变化-平移.
【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.
【解答】解:
∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),
∴右眼的坐标为(0,3),
向右平移3个单位后右眼B的坐标为(3,3).
故答案为:
(3,3).
【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.
21.将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′的坐标为 (2,﹣2) .
【考点】坐标与图形变化-平移.
【分析】根据点的平移规律,左右移,横坐标减加,纵坐标不变;上下移,纵坐标加减,横坐标不变即可解的答案.
【解答】解:
∵点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个长度单位后得到点A′,
∴A′的坐标是(﹣1+3,2﹣4),
即:
(2,﹣2).
故答案为:
(2,﹣2).
【点评】此题主要考查了点的平移规律,正确掌握规律是解题的关键.
22.如图,点P(﹣3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为 (2,2) .
【考点】坐标与图形变化-平移.
【分析】让点P的横坐标加上5即可.
【解答】解:
点P(﹣3,2)处的一只蚂蚁沿水平方向向右爬行了5个单位长度后的坐标为(﹣3+5,2),即(2,2).
故答案为(2,2).
【点评】此题主要考查了点坐标的平移变换.关键是熟记平移变换与坐标变化规律:
①向右平移a个单位,坐标P(x,y)⇒P(x+a,y);
②向左平移a个单位,坐标P(x,y)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3章 位置与坐标 最新北师大版八年级数学上册单元测试第3章 位置与坐标解析版 最新 北师大 八年 级数 上册 单元测试 位置 坐标 解析