解读初中数学新课标理念.docx
- 文档编号:27660680
- 上传时间:2023-07-03
- 格式:DOCX
- 页数:29
- 大小:149.39KB
解读初中数学新课标理念.docx
《解读初中数学新课标理念.docx》由会员分享,可在线阅读,更多相关《解读初中数学新课标理念.docx(29页珍藏版)》请在冰豆网上搜索。
解读初中数学新课标理念
解读初中数学新课标(2011年版),聚焦“图形与几何”教学
一、从课程目标看几何教学
㈠课程目标从《双基》到《四基》,从《两能》到《四能》
㈡“双基”为什么要发展为“四基”
㈢关于数学的“基本思想”
㈣“基本思想”与几何教学
㈤关于数学的“基本活动经验”
㈥“基本活动经验”与几何教学
㈦从“两能”到“四能”的意义
㈧怎样才能有效地引导学生去发现问题进而提出问题
二、从《课标2011年版》核心概念看几何教学
㈠关于空间观念
㈡关于几何直观
㈢关于推理能力
三、从课程内容的变化看几何教学
㈠将具体内容进一步捋顺
㈡为落实“几何直观”能力的培养《课标2011年版》新增内容
㈢《课标2011年版》适度增加几何证明内容
㈣《课标2011年版》减少了一些必要性不大或难以被学生理解的“图形与几何”内容
四、案例分析与教学思考
案例1:
等腰三角形
(1)设计与思考
案例2:
中考几何动态压轴题的解题分析
解读新课标,聚焦几何教学
一、从课程目标看几何教学
㈠课程目标从《双基》到《四基》,从《两能》到《四能》
新课标(2011年版)在总目标中规定,通过义务教育阶段的数学学习,学生能:
⒈获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
⒉体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
⒊了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。
从目标的3个条目来看,目标1被简称为获得“四基”,目标2简称为提高“四能”,目标3则是发展情感态度价值观。
课程目标代表了设计者对于“通过学习学生将获得什么”这一基本问题的回答,同时也明确了教师“为什么教”的教学目的。
目标含盖了1-9年级数学学习。
因此,从“双基”到“四基”,从“两能”到“四能”,被看成新课标(2011版)关于课程目标的重大进展,甚至不少人将其视做这次课标修订的标志之一。
㈡“双基”为什么要发展为“四基”
三个理由:
第一:
因为“双基”仅仅涉及三维目标中的一个目标——“知识与技能”。
而新增的数学的基本思想、基本活动经验则涉及了三维目标中的另外二个目标——“过程与方法”和“情感态度价值观”。
第二:
强调“双基”,教学实施中易造成“以本为本”,见物不见人,而教育必须以人为本,新增的二条就直接与人相关,也符合“素质教育”的理念。
第三:
仅有“双基”还难以培养创新型人才,“双基”只是培养创新型人才的一个基础。
只有知识、技能、思想、经验的综合,才是发展创新型人才的要素和机制。
㈢关于数学的“基本思想”
⒈课标的措词是数学的“基本思想”,而不是数学的“基本思想方法”。
数学方法不同于数学思想。
“数学思想”往往是观念的、全面的、普遍的、深刻的、一般的、内在的、概括的。
“数学方法”往往是操作的、局部的、特殊的、表象的、具体的、程序的、技巧的。
数学思想常常通过数学方法去体现;数学方法又常常反映了某种数学思想。
教师在讲授数学方法时应该努力反映和体现数学思想,让学生体会和领悟数学思想,数学思想是数学教学的核心和精髓。
⒉数学的基本思想
数学抽象的思想:
通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科及其众多的分支。
数学推理的思想:
通过数学推理,进一步得到大量结论,数学科学得以丰富和发展。
数学模型的思想:
通过数学模型,把数学应用到客观世界中,产生了巨大的社会效益,又反过来促进了数学科学的发展。
数学审美的思想:
通过数学审美,看到数学“透过现象看本质”、“和谐统一众多事物”中美的成分,感受到数学“以简驭繁”、“天衣无缝”给我们带来的愉悦,并且从“美”的角度发现和创造新的数学。
⒊数学基本思想的派生与演变
㈣“基本思想”与几何教学
重视数学思想教学,是数学教育的一个共识和传统,思想即意识,也有学者通俗地把“数学思想”说成“将具体的数学知识都忘掉以后剩下的东西”,也就是所谓的“知识易忘、意识永存”。
基本思想的提出,帮助我们从具体的思想方法,特别是一些“解题方法”中“跳”出来,去思考数学发展依赖的更为本质的东西。
这正是我们课堂教学中所要追求的教育价值。
教材是沟通教与学的桥梁,但教材不可能把各种数学思想像叙述知识一样直接写在课本中,因为这样做学生无法吸收。
但教材会根据《新课标》的要求把思想渗透在教学内容中,作为教师就需要通过钻研教材把数学思想挖掘出来,通过合适的呈现方式,让学生逐步感悟它们,掌握它们。
㈤关于数学的“基本活动经验”
⒈基本活动经验的界定
跟“数学的基本思想”一样,新课标也没有对“数学的基本活动经验”展开具体的论述,这样,就留给了我们思考与研究的空间。
什么是数学活动经验?
听课、作笔记、写练习、作作业、回答问题、发表见解、作业讲评、订错、纠错、考试这一些我们司空见惯的教学场景是不是数学活动,广义的讲答案是肯定的。
当然,合作交流、小组讨论、探讨分析、参观实践也是不同形式的数学活动,这里提供不同学者对它的界定:
⑴史宁中,柳海民《素质教育的根本目的与实施路径》一文中(教育研究20071(8))指出:
“基本活动经验是指学生亲自或间接经历了活动过程而获得的经验。
”
⑵张奠宙,竺仕芬,林永伟《“基本活动经验”的界定与分类》一文中(数学通报,2008(5))指出:
“数学经验,依赖所从事的数学活动具有不同的形式。
大体上可以有以下不同的类型:
直接数学活动经验(直接联系日常生活经验的活动所获得的经验)、间接数学活动经验(创设实际情景构建数学模型所获得的数学经验)、专门设计的数学活动经验(由纯粹的数学活动所获得的经验)、意境联结性数学活动经验(通过实际情景意境的沟通。
借助想象,体验数学概念和数学思想的本质)。
”
⑶单在天、景敏《数学活动经验及其对于教学的影响》一文中(课程、教材、教法2008(5))指出:
“数学活动经验的内容包括数学思想方法、数学思维方法、数学活动过程中的体验。
”
⑷徐斌艳《面向基本活动经验的教学设计》一文中(中学数学月刊2011
(2))指出:
“我们还可以将基本活动经验进一步细化,它包括基本的数学操作经验;基本的数学思维活动经验(归纳的经验,数据分析,统计推断的经验,几何推理的经验等);发现问题、提出问题、分析问题、解决问题的经验。
”
⒉基本活动经验的认识
⑴基本活动经验是在特定的数学活动中积累的。
这些活动都必须有明确的数学内涵和数学目的,体现数学的本质。
⑵基本活动经验是一种组合体,包括了数学活动中主观体验以及获得的客观认识;包括数学活动结果,更包括活动的过程。
⑶数学活动经验的类型目前还没有统一,但其核心应该是如何思考的经验,促进学生学会运用数学的思维方式进行思考。
⑷数学活动经验最终可以帮助学生建立自己的数学现实和数学学习的直觉,这种直觉一旦生成,那么在后续的学习和问题解决中将起到重要作用。
数学活动经验即是数学学习的产物,也是学生进一步认识和实践的基础。
⑸基本活动经验的积累,大致需要经过“经历、内化、概括、迁移”的过程,首先,需要经历,无论是生活中的经历,还是学习活动中的经历,对于学生基本经验的积累都是必需的,但仅有经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,并最终迁移到其他的活动和学习中。
㈥“基本活动经验”与几何教学
数学也是一门实践性科学,许多数学问题的解决,数学规律的发现都离不开实践。
体验数学、感受数学才能获得经验。
因此在实际教学中应强调过程性教学,概念的形成过程、定理的发现过程、结论的推导过程、问题解决后的反思过程、应创设合适的情境让学生自己去提出问题、解决问题,教给学生研究问题的套路,在猜想——论证——验证的过程中,体会数学结论的形成过程,积累经验。
如:
学习平行四边形性质时,针对边、角、对角线由特殊到一般的探索、归纳,形成结论并加以论证形成知识。
就是发现数学规律的基本方法:
特殊到一般,具体到抽象,现象到本质。
又如:
在探讨等腰三角形的性质时让学生通过动手实验剪一剪,折一折,在实验中猜想归纳出等腰三角形的性质,形成数学经验。
再如:
探讨三角形内角和之间的关系时,可以画锐角三角形、钝角三角形、直角三角形,通过量角器测量计算三个内角和或把三个内角剪下来拼在一起等方法进行实验,在实验中总结经验,形成知识和能力。
㈦从“两能”到“四能”的意义
数学家认为,问题是数学的心脏,数学的起源和发展就是由问题引起的,数学就是在不断地发现和提出问题并不断地解决问题中前进的,数学教学也是围绕不断产生的新问题进行的。
新课标(2011年版)把原来的“两能”(分析问题和解决问题的能力)发展成“四能”(发现问题、提出问题、分析问题、解决问题的能力)的做法体现了“从头到尾”思考问题的理念,倡导一种问题意识,改变己往问题总是由老师提出,学生的任务就是如何解决问题的“短板”现象,对我们的课堂教学方式将起着深远的影响。
㈧怎样才能有效地引导学生去发现问题进而提出问题
⒈营造宽松和谐的学习氛围,让学生敢于提出问题
⒉构建熟悉有趣的生活情境,让学生善于提出问题
⒊创设开放性、探索性问题情境,让学生勇于提出问题
二、从核心概念看几何教学
课程内容(课标2011年版)在P5页给出了数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识。
这十个核心概念词,用黑体字印出,并逐个对其含义进行界定。
又在P61页“教材编写应体现整体性”中说,它们是义务教育数学课程的核心,也是教材的主线。
在P59页第2自然段中强调在设计试题时,应该关注并且体现本标准的设计思路中提出的几个核心词。
图形与几何是初中阶段学习的主要数学知识领域之一,图形与几何的教学核心价值是发展学生的空间观念、几何直观和数学思维其中数学思维包括数学抽象概括和数学推理。
㈠关于空间观念
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
根据课标对空间观念的描述,空间观念是一种能力,在这定义中,更加强调了抽象概括和形象思维,对教材的编写以及引例的选用起到了指引作用。
空间观念的培养应在几何的过程性教学中加以落实。
㈡关于几何直观
几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
这里的利用图形描述和分析是“执果索因”式的倒推分析法,是一种基本且重要的推理方法,也说明了初中对于推理加强了要求。
接着给出几何直观的价值:
借助几何直观可以把复杂的数学变得简明(这里含有把复杂化为简单的思想)、形象(这里含有数形结合的思想)……几何直观可以帮助学生直观地理解(理解以不同程度的推理作为手段)数学。
㈢关于推理能力
推理能力的发展应贯穿于整个数学学习过程中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从已有事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
在解决问题过程中,两种推理功能不同,相辅相成:
合情推理用于探索思路,发现结论;演绎推理用与证明结论。
课标在这一界定的论述较长,表达了三个含义:
第一个含义:
界定了培养推理能力在义务教育数学课程设计领域内的重要地位。
在新课标第61页又再一次做了强调:
推理能力包括合情推理和演绎推理,无论是“数与代数”、“图形与几何”还是“统计与概率”的内容编排中,都要尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,发展学生的推理能力。
第二个含义:
用分析法给出了推理能力的定义。
其中在合情推理中的“直觉”,在这里也看成是一种能力,就是未经逻辑推理的直观,它仅仅以已经获得的感性认识和累积起来的生活、学习经验为基础。
第三个含义:
给出了这两种推理的功能和关系。
三、从课程内容的变化看几何教学
㈠将具体内容进一步捋顺
⒈加细各分支内容的逻辑体系
如人教版修订后的教材体系(表中括号数字为课时数)
七年级上册(62)
七年级下册(62)
第1章有理数(19)
第2章整式的加减(8)
第3章一元一次方程(19)
第4章几何图形初步(16)
第5章相交线与平行线(14)
第6章实数(8)
第7章平面直角坐标系(7)
第8章二元一次方程组(12)
第9章不等式与不等式组(11)
第10章数据的收集、整理与描述(10)
八年级上册(62)
八年级下册(62)
第11章三角形(8)
第12章全等三角形(11)
第13章轴对称(14)
第14章整式的乘法与因式分解(14)
第15章分式(15)
第16章二次根式(9)
第17章勾股定理(9)
第18章平行四边形(15)
第19章一次函数(17)
第20章数据的分析(12)
九年级上册(62)
九年级上册(44)
第21章一元二次方程(13)
第22章二次函数(12)
第23章旋转(9)
第24章圆(16)
第25章概率初步(12)
第26章反比例函数(8)
第27章相似(14)
第28章锐角三角函数(12)
第29章投影与视图(10)
与实验版教材体系比较,主要有如下几点变化:
⑴“实数”提到“平面直角坐标系”与“不等式与不等式组”之前
⑵“三角形”移后,与“全等三角形”“轴对称”集中安排
⑶“一次函数”移后
⑷“分式”提前
⑸“二次根式”提到“勾股定理”之前
⑹“二次函数”提前,加强其与“一元二次方程”的联系
⑺“反比例函数”后移
⒉将“空间与图形”改成“图形与几何”,基本上予以重写,从“点、线、面、角”的“双基”条目开始,而不管小学是否已经引进过。
㈡为落实“几何直观”能力的培养《课标2011年版》新增内容
⒈结合实例进一步体会用有序数对可以表示物体的位置(新课标P38)
⒉对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形
⒊在平面上,能用方位角和距离刻画两个物体的相对位置(新课标P39)
⒋坐标与坐标运动(新课标P39)
⒌理解两点间距离的意义,能度量两点间的距离(新课标P31)
⒍能识别全等三角形中的对应边、对应角(新课标P33)
⒎了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念(其中正多边形的概念放入“圆”一章中)(新课标P34)
⒏了解等圆、等弧的概念(新课标P35)
⒐了解中心对称、中心对称图形的概念(新课标P37)
《课标2011年版》中,增加了多处有关借助于几何图形了解或理解概念及运用几何作图解决问题的内容目标。
对于第三学段的学生而言,已具备一定的空间想象能力和基本的作图技能,借助于图形则有利于他们描述和分析问题,通过形象的图表,同时采用数形结合的策略,使复杂的数学问题变得简明。
㈢《课标2011年版》适度增加几何证明内容
⒈新增:
探索并证明平行线的判定定理(新课标P32)
⒉新增:
探索并证明角平分线性质定理:
角平分线上的点到角两边距离相等;反之,角的内部到角两边距离相等的点在角的平分线上(新课标P33)
⒊《课标2011年版》明确将“公理”一词统一改为“基本实事”,并由《实验稿》中的6条基本事实改为现行的9条基本事实。
《课标2011年版》另一变化在于加强了几何证明内容。
相对于《实验稿》,这一部分的最大改动是将原来的“公理”一词统一改为“基本事实”这既避免了误用“公理”这一通用术语,又明确了学生在实际中可以直接运用的几何结论。
同时,《课标2011年版》还将原先的上些默认的“类公理”列为需要证明的定理,这一改变既与相关内容要求相匹配,又有利于锻炼学生探索解决几何证明问题方法的能力。
㈣《课标2011年版》减少了一些必要性不大或难以被学生理解的“图形与几何”内容
⒈删去:
“梯形的概念和性质”在尺规作图中明确“不要求写出作法”
⒉删去:
了解镜面对称,能利用对称轴进行图案设计
⒊删去:
视点、视角、盲区;了解并欣赏一些有趣的图形;知道物体的阴影是怎么形成的;能根据光线的方向辩论事物的阴影。
⒋删去:
能够按要求作出简单平面图形旋转后的图形,探索图形之间的变换关系
⒌删去:
能够按要求作出简单平面图形平移后的图形
《课标2011年版》在“图形与几何”内容标准上的变化,无疑给教材的编写,教学实践和教学评价带来了变化,在落实与贯彻新课标的过程中终将以数学课堂作为依托,以一线教师的工作为支撑,在具体的教学实践中得以贯彻实现。
四、案例分析与教学思考
案例1:
基于“中数核心概念、思想方法教学设计”下的等腰三角形
(1)设计与思考
等腰三角形(第一课时)教学设计与思考
一、内容和内容解析
内容:
人教版课标教材八年级上册“12.3等腰三角形(第一课时)”
内容解析:
这节课主要是学习等腰三角形的两条性质:
“等边对等角”和“三线合一”。
因为等腰三角形是轴对称图形,所以可以借助轴对称来研究等腰三角形的特殊性质。
首先,通过剪纸得出概念,再观察实验得出性质,最后推理证明、论证性质。
让学生经历了探究——实验——发现——猜想——论证的研究几何图形问题的全过程,从而领会这种研究数学问题的基本思想方法及其步骤。
这节课的内容,不仅是对前面所学知识的运用,也是今后学习中证明角相等、线段相等,以及直线垂直和求有关角的重要工具。
基于此,本节课的教学重点是:
掌握等腰三角形的性质并能灵活应用。
二、目标和目标解析
目标:
(1)了解等腰三角形的有关概念,掌握等腰三角形的性质。
(2)通过折纸实验探索等腰三角形的性质,经历观察、实验、归纳、推理、交流等活动,体验数学证明的必要性,培养数学说理的习惯。
(3)逐步渗透分类讨论,转化思想、方程建模的数学思想。
培养将几何问题转化为代数问题的分析、综合能力。
目标解析:
让学生经历剪纸折叠活动和通过电脑动画显示,培养他们观察、分析和进行科学的联想,并猜想性质;让学生在探索性质的证明时,由折叠的折痕,联想引顶角的平分线作辅助线,也可以引底边的中线或高线,运用三种不同的辅助线,完成将等腰三角形的分割,分别应用“SAS”,“SSS”和“HL”三种方法证明;经过证明后的命题,获得了性质定理,引导学生用数学语言表达出来,并能够实现三种语言的互译,从中有意识的培养学生的归纳能力和数学语言的表达能力;让学生经历性质的应用过程中,体会分类思想,培养思维的缜密性。
体验转化思想的解题策略,同时,在几何问题转化为代数问题中,积累方程建模的经验。
感受数学思想方法的魅力,提高数学学习的兴趣。
三、教学问题诊断分析
学生已有的认知基础有:
(1)学生对等腰三角形并不陌生,小学已有接触;
(2)学生已经学习了三角形的有关概念和轴对称的知识;(3)学生基本能分离出定理的条件和结论两部分。
也能用符号表示推理。
但是相对于上一章,推理的依据多了,图形、题目的复杂程度也增加了,具体地容易出现以下三种障碍:
(1)证明的思路不清晰,
(2)证明过程的分析问题的能力有待提升,书写还欠规范。
(3)需作辅助线时,学生往往只画不写或写而不全又或犯了逻辑错误。
基于此,本节课的教学难点是:
等腰三角形性质的证明及其应用。
四、教学过程设计
(一)创设情境
问题:
(1)把一张长方形的纸片对折,并剪下阴影部分(如教科书图13.3-1),再把它展开,得到一个什么图形?
(2)上述过程中得到的△ABC有什么特点?
(3)除了剪纸的方法,还可以怎样作出一个等腰三角形?
〔设计意图〕通过剪纸,展示、比较、交流,沟通围绕着本节课的核心目标,贴近学生的“最近发展区”,有助于学生的学习积极性与提升学习兴趣,并能自然地引出学习对象,指向并形成问题的平台。
(二)建构活动:
探究猜想
问题:
(1)等腰三角形是轴对称图形吗?
(2)把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。
(3)对于一般的等腰三角形除了两腰相等以外又有哪些性质呢?
说说你的猜想。
〔设计意图〕通过认知与活动相结合的方式,层层设问,通过师生互动,直观感知,操作确认,形成有递进关系的认知通道,让学生体验数学学习的乐趣,逐步积累科学的认知方法,结合数学方法的运用,形成解决问题的基本经验。
(三)数学化认识:
性质的证明
问题:
(1)性质1的条件和结论分别是什么?
(2)用数学符号如何表达条件和结论?
(3)如何证明?
(4)由性质1的证明过程的启发,你能证明性质2吗?
〔设计意图〕通过对性质定理的证明,关注学生自然语言到数学语言的认识。
培养学生的语言转化能力,体验性质的正确性,提高演绎推理能力。
增强理性认识,使学生明白什么是证明,为什么要证明,如何证明。
(四)基础性训练:
1、判断:
(投影显示)
(1)如图
(1),∵AB=AC,∴∠1=∠2(等边对等角)
(2)如图
(2),∵AB=AC,∴∠B=∠C(等边对等角)
〔设计意图〕性质1的应用中使学生理解条件对结论的制约性。
强调边、角的对应关系。
达到巩固所学知识的目的。
2、填空:
(投影显示)
如图(3),在△ABC中,AB=AC
(1)∵AD⊥BC,∴∠=∠,=;
(2)∵AD是中线,∴⊥,∠=∠;
(3)∵AD是角平分线,∴⊥,=;
(借题发挥:
师:
如图(3)过BC的中点作AD⊥BC,对不对?
师:
如图(3)作∠A的平分线AD使AD⊥BC,对不对?
)
〔设计意图〕巩固性质2知识,使学生懂得“三线合一”的条件与结论的内在联系。
建立正确的推理方法和证明规则。
避免学生对“三线合一”性质的条件和结论产生混淆。
3、口答:
(投影显示)
(1)等腰三角形的一个底角等于70°,则它的另外两个角分别是多少度?
(2)等腰三角形的一个顶角等于70°,则它的另外两个角分别是多少度?
(3)等腰三角形的一个角等于70°,则它的另外两个角分别是多少度?
(4)等腰三角形的一个角等于90°,则它的另外两个角分别是多少度?
(5)等腰三角形的一个角等于120°,则它的另外两个角分别是多少度?
〔设计意图〕通过变式练习,体现层次分明的递进关系来达到培养学生归纳探究能力以及培养思维的缜密性,增强学生应用知识的能力。
渗透分类讨论的数学思想。
4、如图(4),在△ABC中,AB=AC,点D在AC上,
且BD=BC=AD。
求△ABC各角的度数。
〔设计意图〕培养学生的几何识图能力,渗透转化思想在解题策略中的指导作用。
5、如图(5),在△ABC中,AB=AD=DC,∠BAD=26°,
求∠B和∠C的度数。
〔设计意图〕本题是第四题的平行型问题设计。
目的是为了及时巩固解题方法,提高学生解决问题的能力。
(五)拓展延伸
(1)课堂小结:
引导学生归纳小结所学内容以及内容所反映的数学思想方法。
(2)数学小日记
姓名
日期
今天数学课的课题
所学的重要知识
理解得最好的地方
疑惑(或还需进一步理解的地方)
对课堂表现的评价(包括对自己、同学、老师)
所学内容在日常生活中的举例
(3)作业布置:
课本P56习题12.3第1、4、6、8题
〔设计意图〕拓展延伸环节以课堂小结、数学小日记、作业布置三个部分组成。
借助学习方式的变化,提升学生的认知水平。
真正实现“不同的人在数学上得到不同的发展”。
五、教学思考:
关于“中学数学核心概念、思想方法教学设计”框架结构
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解读 初中 数学 新课 理念