勾股定理的应用.docx
- 文档编号:27451232
- 上传时间:2023-07-01
- 格式:DOCX
- 页数:18
- 大小:369.26KB
勾股定理的应用.docx
《勾股定理的应用.docx》由会员分享,可在线阅读,更多相关《勾股定理的应用.docx(18页珍藏版)》请在冰豆网上搜索。
勾股定理的应用
勾股定理的应用提高训练
1.(2009•鸡西)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)
2.(2008•义乌市)如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?
(精确到0.1米,
3.(2007•南京)如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A-C-B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10km,∠A=30°,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?
(结果精确到0.1km)(参考数据:
4.(2005•南京)如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=6m.求点B到地面的垂直距离BC.
5.(2005•双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
6.(2002•吉林)如图
(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图
(2)所示,测得BD=0.5米,求梯子顶端A下落了多少米?
7.(2002•黑龙江)“希望中学”有一块三角形形状的花圃ABC,现可直接测量到∠A=30°,AC=40 m,BC=25 m,请求出这块花圃的面积.
8.(2000•上海)如图,公路AB和公路CD在点P处交会,且∠APC=45°,点Q处有一所小学,PQ=120
2
m,假设拖拉机行驶时,周围130m以内会受到噪声的影响,那么拖拉机在公路AB上沿PA方向行驶时,学校是否会受到噪声影响?
请说明理由;若受影响,已知拖拉机的速度为36km/h,那么学校受影响的时间为多少秒?
9.有一根竹竿,不知道它有多长.把竹竿横放在一扇门前,竹竿长比门宽多4尺;把竹竿竖放在这扇门前,竹竿长比门的高度多2尺;把竹竿斜放,竹竿长正好和门的对角线等长.问竹竿长几尺?
10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
11.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:
00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:
00,甲、乙二人相距多远?
还能保持联系吗?
12.“中华人民共和国道路交通管理条例”规定:
小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?
(参考数据转换:
1m/s=3.6km/h)
13.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?
14.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.
(1)A城是否受到这次台风的影响?
为什么?
(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?
15.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?
为什么?
16.为了丰富少年儿童的业余生活,某社区要在如图所示AB所在的直线建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:
图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
17.小明想测量学校旗杆的高度,他采用如下的方法:
先将旗杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,你能帮它计算一下旗杆的高度.
18.如图,A市气象站测得台风中心在A市正东方向300千米的B处,以10
7
千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.
(1)A市是否会受到台风的影响?
写出你的结论并给予说明;
(2)如果A市受这次台风影响,那么受台风影响的时间有多长?
19.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).
20.如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积.
21.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?
最低造价是多少?
22.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A偏离欲到达地点B相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度BC为多少米?
23.小东拿着一根长竹秆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果秆比城门高1米,当他把秆斜着时,两端刚好顶着城门的对角,问秆长多少米?
24.小刚想知道学校升旗杆的高度,他发现旗杆顶端处的绳子垂到地面后还多1米.当他把绳子拉直后并使下端刚好接触地面,发现绳子下端离旗杆下端3米.请你帮小刚把旗杆的高度求出来.
25.印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲;
出泥不染亭亭立,忽被强风吹一边,
渔人观看忙向前,花离原位二尺远;
能算诸君请解题,湖水如何知深浅”
请用学过的数学知识回答这个问题.
26.如图,两个小滑块A、B由一根连杆连接,A、B分别可以在互相垂直的两个滑道上滑动.开始时滑块A距O点16cm,滑块B距O点12cm.那么滑块A向下滑动6cm时,求滑块B向外滑动了多少cm?
27.如图,一艘帆船由于风向的原因,先向正东方航行了160千米,然后向正北方航行了120千米,这时它离出发点有多远?
28.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.
29.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.
30.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.
31.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
32.如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?
33.如图,飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800m处,过了10s,飞机距离这个男孩头顶5000m,飞机每秒飞行多少米?
34.如图所示,为修铁路需凿通隧道AC,测得∠A=53°,∠B=37°.AB=5km,BC=4km,若每天凿0.3km,试计算需要几天才能把隧道AC凿通?
1.(2010•拱墅区一模)如图,长方体的底面是边长为1cm 的正方形,高为3cm.
(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少cm?
(2)如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要------cm.(直接填空)
2.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.
3.如图,在长方体上有一只蚂蚁从项点A出发,要爬行到顶点B去找食物,一只长方体的长、宽、高分别为4、1、2,如果蚂蚁走的是最短路径,你能画出蚂蚁走的路线吗?
4.如图:
已知长方体的长、宽、高分别为12、9、5,蚂蚁从A爬到C'点的最短路程是多少?
(长方体各面都是长方形)
5.如右图,有一个长方体盒子,它的长是70cm,宽和高都是50cm.在A点处有一只蚂蚁,它想吃到B点处的食物,那么它爬行的最短路程是多少?
6.如图所示,有一长方体的长宽高分别为6cm、4cm、4cm.在底面A处有一只蚂蚁,它想吃到长方体上面B处的食物,需要爬行的最短距离是多少?
7.一个几何体的三视图如右图所示,
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的侧面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到CD的中点E,请你求出这个线路的最短路程.
8.如果
(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图
(2)所示已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出的最长线段的长度?
这样的线段可以画几条?
(2)求∠B′A′C′的度数?
说明理由.
(3)在图1中若蚂蚁从点A′沿着正方体的表面爬行到点C,试求爬行的最短路程.
9.如图,一个圆柱形纸筒的底面周长是40cm,高是30cm,一只小蚂蚁在圆筒底的A处,它想吃到上底与下底面中间与A点相对的B点处的蜜糖,试问蚂蚁爬行的最短的路程是多少?
10.如图,一圆柱高BC为20cm,底面周长是10cm,一只蚂蚁从点A爬到点P处吃食,且PC=2BC,请画出爬行的最短路线并求出最短路线长.
7.(2009•恩施州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线x的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图
(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图
(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB.
(1)求S1、S2,并比较它们的大小;
(2)请你说明S2=PA+PB的值为最小;
(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.
8.(2008•恩施州)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长;
(2)请问点C满足什么条件时,AC+CE的值最小;
9.(2007•庆阳)需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.
10.(2006•贵港)如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.
(1)新开发区A到公路MN的距离为--------;
(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=------------(千米).
12.(2004•郫县)某供电部门准备在输电主干线l上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电.已知居民小区A、B分别到主干线l的距离AA1=2km,BB1=1km,且A1B1=4km.
(1)如果居民小区A、B在主干线l的两旁,如图
(1)所示,那么分支点M在什么地方时总线路最短?
最短线路的长度是多少千米?
(2)如果居民小区A、B在主干线l的同旁,如图
(2)所示,那么分支点M在什么地方时总线路最短?
此时分支点M与A1的距离是多少千米?
13.(2003•泉州)如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y轴.
(1)请画出:
点A、B关于原点O的对称点A2、B2(应保留画图痕迹,不必写画法,也不必证明);
(2)连接A1A2、B1B2(其中A2、B2为
(1)中所画的点),试证明:
x轴垂直平分线段A1A2、B1B2;
(3)设线段AB两端点的坐标分别为A(-2,4)、B(-4,2),连接
(1)中A2B2,试问在x轴上是否存在点C,使△A1B1C与△A2B2C的周长之和最小?
若存在,求出点C的坐标(不必说明周长之和最小的理由);若不存在,请说明理由.
14.(2001•宜昌)某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:
用尺规作图,保留作图痕迹,不写作法和证明)
8.牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家,已知A点到河边C的距离为500米,点B到河边的距离为700米,且CD=500米.
(1)请在原图上画出牧童回家的最短路线;
(2)求出最短路线的长度.
9.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
10.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
6.如图,要在河边修建一个水泵站,分别向张村A和李庄B送水,已知张村A、李庄B到河边的距离分别为2km和7km,且张、李二村庄相距13km.
(1)水泵应建在什么地方,可使所用的水管最短?
请在图中设计出水泵站的位置;
(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?
5.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:
甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米?
6.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求PA+PB+PC的最小值.
7.如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:
AC=2,BC=1.
(1)求折线OPQB的长的最小值;
(2)当折线OPQB的长最小时,试确定Q的位置.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 应用