层次分析法一致性检验.docx
- 文档编号:27307398
- 上传时间:2023-06-29
- 格式:DOCX
- 页数:11
- 大小:23.11KB
层次分析法一致性检验.docx
《层次分析法一致性检验.docx》由会员分享,可在线阅读,更多相关《层次分析法一致性检验.docx(11页珍藏版)》请在冰豆网上搜索。
层次分析法一致性检验
层次分析法(AnalyticHierarchyProcess,简称AHP)是
对一些较为复杂、较为模糊的问题作出决策的简易方法,
它特别适用于那些难于完全定量分析的问题。
它是美国运
筹学家T.L.Saaty教授于70年代初期提出的一种简便、
灵活而又实用的多准则决策方法。
§1层次分析法的基本
原理与步骤人们在进行社会的、经济的以及科学管理领域
问题的系统分析中,面临的常常是一个由相互关联、相互
制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁
而实用的建模方法。
运用层次分析法建模,大体上可按下
面四个步骤进行:
(i)建立递阶层次结构模型;(ii)
构造出各层次中的所有判断矩阵;(ill)层次单排序及一
致性检验;(iv)层次总排序及一致性检验。
下面分别说
明这四个步骤的实现过程。
J.1递阶层次结构的建立与特
点应用AHP分析决策问题时,首先要把问题条理化、层次
化,构造出一个有层次的结构模型。
在这个模型下,复杂
问题被分解为元素的组成部分。
这些元素又按其属性及关
系形成若干层次。
上一层次的元素作为准则对下一层次有关
元素起支配作用。
这些层次可以分为三类:
(1)最髙层:
这一层次中只有一个元素,一般它是分析问题的预定目标或
理想结果,因此也称为目标层。
(ii)中间层:
这一层次
中包含了为实现目标所涉及的中间环节,它可以由若干个
页脚
层次组成,包括所需考虑的准则、子准则,因此也称为准则
层。
(ill)最底层:
这一层次包括了为实现目标可供选择
的各种措施、决策方案等,因此也称为措施层或方案层。
递
阶层次结构中的层次数与问题的复杂程度及需要分析的详
尽程度有关,一般地层次数不受限制。
每一层次中各元素
所支配的元素一般不要超过9个。
这是因为支配的元素过
多会给两两比较判断带来困难。
下面结合一个实例来说明
递阶层次结构的建立。
例1假期旅游有为撃3个旅游胜
地供你选择,试确定一个最佳地点。
在此问题中,你会根
据诸如景色、费用、居住、饮食和旅途条件等一些准则去反
复比较3个侯选地点。
可以建立如下的层次结构模型。
目
标层选择旅游地准则层景色费用居住饮食旅途措
施层1.2构造判断矩阵层次结构反映了因素之间的关系,
但准则层中的各准则在目标衡量中所占的比重.docin.并
不一定相同,在决策者的心目中,它们各占有一定的比例。
在确定影响某因素的诸因子在该因素中所占的比重时,遇到
的主要困难是这些比重常常不易定量化。
此外,当影响某
因素的因子较多时,直接考虑各因子对该因素有多大程度
的影响时,常常会因考虑不周全、顾此失彼而使决策者提出
与他实际认为的重要性程度不相一致的数据,甚至有可能
提出一组隐含矛盾的数据。
为看清这一点,可作如下假设:
将一块重为1千克的石块砸成小块,你可以精确称出它们
页脚
的重量,设为,现在,请人估计这小块的重量占总重量的
比例(不能让他知道各小石块的重量),此人不仅很难给
出精确的比值,而且完全可能因顾此失彼而提供彼此矛盾
的数据。
设现在要比较个因子对某因素的影响大小,怎
样比较才能提供可信的数据呢?
Saaty等人建议可以采取
对因子进行两两比较建立成对比较矩阵的办法。
即每次取
两个因子和,以表示和对的影响大小之比,全部比较
结果用矩阵表示,称为之间的成对比较判断矩阵(简称
判断矩阵)。
容易看出,若与对的影响之比为,则与
对的影响之比应为。
定义1若矩阵满足(i),(ii)
()则称之为正互反矩阵(易见,宀。
关于如何确定的
值,Saaty等建议引用数字广9及其倒数作为标度。
下表列
出了广9标度的含义:
标度含义135792,4,6,
8倒数表示两个因素相比,具有相同重要性表示两个因素
相比,前者比后者稍重要表示两个因素相比,前者比后者
明显重要表示两个因素相比,前者比后者强烈重要表示两
个因素相比,前者比后者极端重要表示上述相邻判断的中
间值若因素与因素的重要性之比为,那么因素与因素
重要性之比为。
从心理学观点来看,分级太多会超越人们
的判断能力,既增加了作判断的难度,又容易因此而提供
虚假数据。
Saaty等人还用实验方法比较了在各种不同标度
下人们判断结果的正确性,实验结果也表明,采用1〜9标
页脚
度最为合适。
最后,应该指出,一般地作次两两判断是必
要的。
有人认为把所有元素都和某个元素比较,即只作个
比较就可以了。
这种作法的弊病在于,任何一个判断的失
误均可导致不合理的排序,而个别判断的失误对于难以定量
的系统往往是难以避免的。
进行次比较可以提供更多的信
息,通过各种不同角度的反复比较,从而导出一个合理的
排序。
.docin.1.3层次单排序及一致性检验判断矩阵对
应于最大特征值的特征向量,经归一化后即为同一层次相
应因素对于上一层次某因素相对重要性的排序权值,这一
过程称为层次单排序。
上述构造成对比较判断矩阵的办法
虽能减少其它因素的干扰,较客观地反映出一对因子影响
力的差别。
但综合全部比较结果时,其中难免包含一定程度
的非一致性。
如果比较结果是前后完全一致的,则矩阵的
元素还应当满足:
,
(1)定义2满足关系式
(1)的正
互反矩阵称为一致矩阵。
需要检验构造出来的(正互反)
判断矩阵是否严重地非一致,以便确定是否接受。
定理
1正互反矩阵的最大特征根必为正实数,其对应特征向量
的所有分量均为正实数。
的其余特征值的模均严格小于。
定理2若为一致矩阵,则(i)必为正互反矩阵。
(ii)
的转置矩阵也是一致矩阵。
(iii)的任意两行成比例,
比例因子大于零,从而(同样,的任意两列也成比例)。
(iv)的最大特征值,其中为矩阵的阶。
的其余特征
页脚
根均为零。
(V)若的最大特征值对应的特征向量为,
则,,即定理3阶正互反矩阵为一致矩阵当且仅当其最
大特征根,且当正互反矩阵非一致时,必有。
根据定理
3,我们可以由是否等于来检验判断矩阵是否为一致矩
阵。
由于特征根连续地依赖于,故比大得越多,的非
一致性程度也就越严重,对应的标准化特征向量也就越不
能真实地反映出在对因素的影响中所占的比重。
因此,
对决策者提供的判断矩阵有必要作一次一致性检验,以决定
是否能接受它。
对判断矩阵的一致性检验的步骤如下:
(1)计算一致性指标(ii)查找相应的平均随机一致性指
标。
对,Saaty给出了的值,如下表所示:
12345
6789000.580.901.121.241.321.411.45的值
是这样得到的,用随机方法构造500个样本矩阵:
随机地从
广9及其倒数中抽取数字构造正互反矩阵,求得最大特征
根的平均值,并定义<(iii)计算一致性比例当时,
认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作
适当修正。
1.4层次总排序及一致性检验.docin.上面我
们得到的是一组元素对其上一层中某元素的权重向量。
我们
最终要得到各元素,特别是最低层中各方案对于目标的排
序权重,从而进行方案选择。
总排序权重要自上而下地将
单准则下的权重进行合成。
设上一层次(层)包含共个
因素,它们的层次总排序权重分别为。
又设其后的下一层
页脚
次(层)包含个因素,它们关于的层次单排序权重分别
为(当与无关联时,)。
现求层中各因素关于总目标
的权重,即求层各因素的层次总排序权重,计算按下表
所示方式进行,即,。
111411/2112411/21
1/21531/21/41/41/511/31/3111/331122
2331(方案层)11/41/211/41/5413411/2
21/31521131/311/351/31731731/711/5
1/711171791171/7111/71/711/911(层
次总排序)如下表所示。
准则研究发展待遇同事地理
单位课题前途情况位置名气总排序权值准则层权值
0.15070.17920.18860.04720.14640.2879方案层单
排序权值工作1工作2工作30.13650.09740.2426
0.27900.46670.79860.62500.33310.08790.64910.4667
0.10490.23850.56950.66940.07190.06670.09650.3952
0.29960.3052.docin.根据层次总排序权值,该生最满意
的工作为工作1。
计算程序如下:
clca二[1,1,1,4,1,1/2
1,1,2,4,1,1/21,1/2,1,5,3,1/21/4,1/4,1/5,1,1/3,1/3
1,1,1/3,3,1,12,2,2,3,3,11;
[x,y]=eig(a);eigenvalue=diag(y);lamda=eigenvalue
(1);
cil=(lamda-6)/5;crl=cil/l.24wl=x(:
l)/sum(x(:
1))
bl二[1,1/4,1/2;4,1,3;2,1/3,1];
[x,y]=eig(bl);eigenvalue^diag(y);lamda二eigenvalue(1
页脚
);ci21=(lamda-3)/2;cr21=ci21/0.58w21=x(:
l)/sum(x(:
l))b2=[l1/4l/5;411/2;521];[x,y]二eig(b2);eigenvalue二diag(y);lamda二eigenvalue
(1);ci22=(lamda-3)/2;cr22=ci22/0.58w22=x(:
l)/sum(x(:
l))b3=[l31/3;1/31l/7;371];[x,y]=eig(b3);eigenvalue二diag(y);lamda二eigenvalue仃);ci23=(lamda-3)/2;cr23=ci23/0.58w23=x(:
l)/sum(x(:
l))b4=[l1/35;317;1/51/71];[x,y]二eig(b4);eigenvalue二diag(y);lamda二eigenvalue
(1);ci24=(lamda-3)/2;cr24=ci24/0.58w24=x(:
l)/sum(x(:
l))b5=[l17;117;1/71/71];[x,y]=eig(b5);eigenvalue二diag(y);lamda二eigenvalue
(2);ci25=(lamda-3)/2;cr25=ci25/0.58w25=x(:
2)/sum(x(:
2))b6=[l79;1/711;l/911];[x,y]二eig(b6);eigenvalue二diag(y);lamda=eigenvalue
(1);ci26=(lamda-3)/2;cr26=ci26/0.58w26=x(:
l)/sum(x(:
1))
wsum二[w21,w22,w23,w24,w25,w26]*wl
ci二[ci21,ci22,ci23,ci24,ci25,ci26];cr=ci*wl/sum(O.58*wl)习题A1.若发现一成对比较矩阵的非一致性较为严重,应如何寻找引起非一致性的元素?
例如,设已构造了成对比较矩阵.docin.(i)对作
页脚
一致性检验。
(ii)如的非一致性较严重,应如%层次分
析法的matlab程序dispC请输入判断矩阵A(n阶)');
A二input('A二J;[n,n]=size(A);x=ones(n,100);
y二ones(n,100);m二zeros(1,100);m(l)=max(x(:
1));
y(:
l)=x(:
1);x(:
2)=A*y(:
1);m
(2)=max(x(:
2));
y(:
2)=x(:
2)/m
(2);p=0.0001;i=2;k=abs(m
(2)-m
(1));
whilek>pi=i+l;x(:
i)二A*y(:
i-l);m(i)=max(x(:
i));
y(:
i)二x(:
i)/m(i);k=abs(m(i)-m(i-l));end
a=sum(y(:
i));w=y(:
i)/a;t=m(i);dispC权向量
*);disp(w);disp('最大特征值*);disp(t);%以下是一致
性检验CI=(t-n)/(n-l);RI=[000.520.891.121.261.36
1.411.461.491.521.541.561.581.59];CR二CI/RI(n);
ifCR<0.10dispC此矩阵的一致性可以接受!
');
dispC*CI=,);disp(CI);dispCCR=,);disp(CR);else
dispC此矩阵的一致性不可以接受!
');end层次分析法
(AnalyticalHierarchyProcess,AHP)AHP是美国著名
数学家T.L.Saaty在20世纪70年代提出的,是一种定性
分析和定量分析相结合的评价方法。
(1)层次结构模型。
先确定评价的目标,再明确方案评价的准则,然后把目标、
评价准则连同行动方案一起构造一个层次结构模
型。
.docin.
(2)因素两两比较评分和判定矩阵。
层次结
构模型做出之后,评价者对各风险因素进行两两比较评分。
页脚
经评分可得若干两两判定矩阵。
(3)计算各判定矩阵权重、
排序,并做一致性检验。
对于求判定矩阵每行所有元素的
几何平均值:
・
(1)将归
一化,计算W'
(2)计算判定矩阵的最大特征
值:
(3)其中为
判断矩阵每一行元素的乘积,为权重向量的第个分量。
计
算CI,进行一致性检验。
在算出后,可计算CI,进行一致
性检验,公式如下:
CI・(4)(4)式
中n为判定矩阵阶数,查表得随机一致性指标RI,并计算
比值CI/RI,当CI/RKO.1时,判定矩阵一致性达到了要
求,否则重新进行判定,写出新的判定矩阵。
比列标度及
含义标度含义1表示两个因素相比较,二者具有相同
的重要程度3表示两个因素相比较,前者比后者稍微重要
5表示两个因素相比较,前者比后者明显重要7表示两个
因素相比较,前者比后者强烈重要9表示两个因素相比较,
前者比后者极端重要2,4,6,82,4,6,8分别表示相
邻判断1-3,3-5,5-7,7-9的中值倒数表示二者交换位
置之后的比较RI值表n123456789RI0.000.00
0.580.901.121.241.321.411.45%层次分析法的matlab
程序%%%%diertimoxingyi.docin.clc,cleardispC输入
判断矩阵‘);%在屏幕显示这句话A=input(,A=,);%从屏
页脚
幕接收判断矩阵[n,n]二size(A);%计算A的维度,这里是
方阵,这么写不太好x二ones(n,100);%x为n行100列全
1的矩阵y二ones(n,100);%y同xm二zeros(1,100);%m为
1行100列全0的向量m(l)=max(x(:
1));%x第一列中
最大的值赋给m的第一个分量y(:
l)=x(:
1);%x的第一
列赋予y的第一列x(:
2)=A*y(:
l);%x的第二列为矩阵
A*y(:
1)m
(2)=max(x(:
2));%x第二列中最大的值赋给m
的第二个分量y(:
2)二x(:
2)/m
(2);%x的第二列除以m
(2)
后赋给y的第二列p=0.0001;i=2;k=abs(m
(2)-m
(1));%初
始化p,i,k为m
(2)-m(l)的绝对值whilek>p%当k>p是
执行循环体i=i+l;%i自加1x(:
i)二A*y(:
i-1);%x的
第i列等于A*y的第i-1列m(i)=max(x(:
i));%m的第i
个分量等于x第i列中最大的值y(:
i)二x(:
i)/m(i);%y
的第i列等于x的第i列除以m的第i个分量
k=abs(m(i)-m(i-l));%k等于m(i)-m(i~1)的绝对值end
a=sum(y(:
i));%y的第i列的和赋予aw二y(:
i)/a;%y
的第i列除以at=m(i);%m的第i个分量赋给tdisp('
权向量:
');disp(w);%显示权向量wdispC最大特征
值:
1);disp(t);%显示最大特征值t%以下是一致性检验
CI=(t-n)/(n-l);%t-维度再除以维度T的值赋给CIRI=[0
00.520.891.121.261.361.411.461.491.521.541.56
1.581.59];%计算的标准CR=CI/RI(n);%计算一致性if
页脚
CR<0.10dispC此矩阵的一致性可以接受!
');
disp('CI=,);disp(CI);disp('CR=');disp(CR);else
dispC此矩阵的一致性不可以接受!
’);end判断矩阵是自
己采用1-9标度法自己确定的,我刚完成一份系统工程的作
业:
用身边的案例完成层次分析法分析,我是用一个下午
手工计算出来的,没有用软件计算,建议你借一本系统工
程的书来看,我有一个课件是AHP分析法(层次分析法),
但是给你恐怕没有结合书本恐怕看不懂,还是先看书好些。
。
很容易看懂的,只是计算麻烦。
。
那个加权平均法,也很
简单哦。
。
.docin.刚才看到很多人在问怎么求判断矩阵:
就把规则打出来了,也贴给你吧标度含义1表示两个元
素相比,具有同样的重要性3表示两个元素相比,前者比
后者稍重要5表示两个元素相比,前者比后者明显重要7
表示两个元素相比,前者比后者极其重要9表示两个元素
相比,前者比后者强烈重要2,4,6,8表示上述相邻判断
的中间值倒数若元素i和元素j的重要性之比为aij,那
么元素j与元素i的重要性之比为aji=l/aij对于目标
旅游地说,景色比费用怎么重要,是你可以自己定的,你认
为一样重要就是1-囂强烈重要就是9:
1,也可以取中间
数值,6:
1等,两两比较,把数值填入排列成判断矩阵(判
断矩阵是对角线积是1的正反矩阵)就可,其实你的图形
已经比较的很清楚了,只是好像你不知道比较规则而已,希
页脚
望你看后能明白。
。
。
function
tw=tolsortvec(utw,dw,CIC,RIC)%求层次总排序权重并进行一致性检验%utw为上一层因素的总排序权重行向量%dw为下一层因素相对于上一层各因素的层次单排序权重矩阵%CIC为一致性指标列向量%RIC为随机一致性指标列向量tw=dw*utwCR=utw'*CIC/(utw'*RIC);ifCR>=0.10disp([input(f层次总排序没通过一致性检验,请重新调整判断矩阵*)]);elsedisp([input((层次总排序通过一致性检验')]);end・docin.
页脚
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 层次 分析 一致性 检验