三元一次方程组解法优秀教案.docx
- 文档编号:27173451
- 上传时间:2023-06-27
- 格式:DOCX
- 页数:8
- 大小:17.29KB
三元一次方程组解法优秀教案.docx
《三元一次方程组解法优秀教案.docx》由会员分享,可在线阅读,更多相关《三元一次方程组解法优秀教案.docx(8页珍藏版)》请在冰豆网上搜索。
三元一次方程组解法优秀教案
三元一次方程组解法优秀教案
(经典版)
编制人:
__________________
审核人:
__________________
审批人:
__________________
编制学校:
__________________
编制时间:
____年____月____日
序言
下载提示:
该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关注!
Downloadtips:
Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!
Inaddition,thisshopprovidesyouwithvarioustypesofclassicsampleessays,suchaspreschoollessonplans,elementaryschoollessonplans,middleschoollessonplans,teachingactivities,comments,messages,speechdrafts,workplans,worksummary,experience,andothersampleessays,etc.IwanttoknowPleasepayattentiontothedifferentformatandwritingstylesofsampleessays!
三元一次方程组解法优秀教案
这是三元一次方程组解法优秀教案,是优秀的数学教案文章,供老师家长们参考学习。
三元一次方程组解法优秀教案第1篇
教学目标:
1.了解三元一次方程组的概念.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:
(1)使学生会解简单的三元一次方程组
(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:
针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。
实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:
1.题目中有几个条件?
2.问题中有几个未知量?
3.根据等量关系你能列出方程组吗?
【列表分析】
(三个量关系)每张面值X张数=钱数
1元xx
2元y2y
5元z5z
合计1222
注1元纸币的数量是2元纸币数量的4倍,即x=4y
解:
(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
根据题意列方程组为:
【得出定义】(师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的.项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?
能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?
(展开思路,畅所欲言)
例1.解方程组
分析1:
发现三个方程中x的系数都是1,因此确定用减法“消x”.
分析2:
方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:
有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:
缺某元,消某元.
教师提示:
当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:
通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组二元一次方程组一元一次方程
2.解题要有策略,今天我们学到的策略是:
有表达式,用代入法;缺某元,消某元.
四、布置作业
1.解方程组你能有多少种方法求解它?
三元一次方程组解法优秀教案第2篇
教学目标
知识与技能
1.了解三元一次方程组的概念
2.会用“代入”“加减”把三元一次方程组化为“二元”、进而化为“一元”方程来解决.
过程与方法
在学习解二元一次方程组的基础上,通过洋葱微课的学习,掌握解三元一次方程组的解法.
情感态度与价值观
让学生感受把新知转化为已知、把复杂问题转化为简单问题这一化归思想,体会数学学习的方法.
教学重难点
教学重点
1.三元一次方程组的概念.
2.解三元一次方程组.
教学难点
根据方程组的特点,选择“代入”或“加减”进行求解.
课型:
新授
课时:
1课时
教学方法:
观摩、引导、讲练
教具:
洋葱学院(网页版)、粉笔
教学过程
导入新课
同学们,七年级的上册我们学了“一块钱”一次的方程,在前面我们又刚刚学完了“二块钱”一次的方程组,现在物价又上涨了,所以今天我们来学习“三块钱”一次的方程组.
讲授新课
播放洋葱微课《解三元一次方程组》[00:
00—01:
20].
目的:
引导学生通过对视频内容学习,结合二元一次方程组的概念类比,得出三元一次方程组的概念.
教学效果:
通过对视频内容的学习,使学生了解三元一次方程组的概念及本节课要解决的问题.
归纳:
“方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组”.
播放洋葱微课《解三元一次方程组》[01:
20—07:
28].
目的:
类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路——消元,并找出相应的消元方法.
教学效果:
通过对视频内容的学习,类比前面所学二元一次方程组的解法,得到解三元一次方程组的求解思路:
通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.
巩固练习:
教材(人教版)第106页练习第1题.
第106页练习第1题
目的:
让学生模仿视频和书上例题的做法独立演算,使其进一步理解三元一次方程组的求解思路,培养计算能力.
教学效果:
让学生对消元有进一步的理解,在消元过程中,消“谁”都行,用哪种消法(代入法、加减法)都可以,但如果选择合适,可提高计算的效率.
课堂小结
1.三元一次方程组的概念;
2.三元一次方程组的解法.
作业
教材(人教版)习题8.4第1题.
习题8.4第1题
板书设计
板书设计
教学反思
本节课属选修内容,适合学有余力的学生学习.通过视频学习和教师答疑,使学生明白解三元一次方程组的方法和思想,进而总结出解多元方程的基本方法.
在使用“微课+课堂”的混合模式教学下,合适的微课可以激发学生的学习兴趣,但教师也要注意对微课外的习题设计要符合学生学习情况,进行精心巧妙的设计.
三元一次方程组解法优秀教案第3篇
教学目标:
三元一次方程组解法教学设计优秀范文
1.了解三元一次方程组的概念.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:
(1)使学生会解简单的三元一次方程组
(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:
针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。
实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:
1.题目中有几个条件?
2.问题中有几个未知量?
3.根据等量关系你能列出方程组吗?
【列表分析】
(三个量关系)每张面值X张数=钱数
1元xx
2元y2y
5元z5z
合计1222
注1元纸币的数量是2元纸币数量的4倍,即x=4y
解:
(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
根据题意列方程组为:
【得出定义】(师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的.项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?
能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?
(展开思路,畅所欲言)
例1.解方程组
分析1:
发现三个方程中x的系数都是1,因此确定用减法“消x”.
分析2:
方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:
有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:
缺某元,消某元.
教师提示:
当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:
通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组二元一次方程组一元一次方程
2.解题要有策略,今天我们学到的策略是:
有表达式,用代入法;缺某元,消某元.
四、布置作业
1.解方程组你能有多少种方法求解它?
三元一次方程组解法优秀教案第4篇
教学目标:
1.了解三元一次方程组的概念.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:
(1)使学生会解简单的三元一次方程组
(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:
针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。
实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:
1.题目中有几个条件?
2.问题中有几个未知量?
3.根据等量关系你能列出方程组吗?
【列表分析】
(三个量关系)每张面值X张数=钱数
1元xx
2元y2y
5元z5z
合计1222
注1元纸币的数量是2元纸币数量的4倍,即x=4y
解:
(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
根据题意列方程组为:
【得出定义】(师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?
能不能类比二元一次方程组的`解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?
(展开思路,畅所欲言)
例1.解方程组
分析1:
发现三个方程中x的系数都是1,因此确定用减法“消x”.
分析2:
方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:
有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:
缺某元,消某元.
教师提示:
当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:
通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组二元一次方程组一元一次方程
2.解题要有策略,今天我们学到的策略是:
有表达式,用代入法;缺某元,消某元.
四、布置作业
1.解方程组你能有多少种方法求解它?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三元 一次 方程组 解法 优秀 教案