易错题精选初中数学数据分析基础测试题附答案解析2.docx
- 文档编号:27147058
- 上传时间:2023-06-27
- 格式:DOCX
- 页数:19
- 大小:62.95KB
易错题精选初中数学数据分析基础测试题附答案解析2.docx
《易错题精选初中数学数据分析基础测试题附答案解析2.docx》由会员分享,可在线阅读,更多相关《易错题精选初中数学数据分析基础测试题附答案解析2.docx(19页珍藏版)》请在冰豆网上搜索。
易错题精选初中数学数据分析基础测试题附答案解析2
(易错题精选)初中数学数据分析基础测试题附答案解析
(2)
一、选择题
1.某班40名同学一周参加体育锻炼时间统计如表所示:
人数(人)
3
17
13
7
时间(小时)
7
8
9
10
那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()
A.17,8.5B.17,9C.8,9D.8,8.5
【答案】D
【解析】
【分析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】
解:
众数是一组数据中出现次数最多的数,即8;
由统计表可知,处于20,21两个数的平均数就是中位数,
∴这组数据的中位数为
;
故选:
D.
【点睛】
考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
2.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:
品种
甲
乙
丙
平均产量/(千克/棵)
90
90
方差
10.2
24.8
8.5
若从这三个品种中选择一个在该地区推广,则应选择的品种是( )
A.甲B.乙C.丙D.甲、乙中任选一个
【答案】A
【解析】
【分析】
根据平均数、方差等数据的进行判断即可.
【详解】
根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.
故选:
A
【点睛】
本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.
3.一组数据2,
,6,3,3,5的众数是3和5,则这组数据的中位数是()
A.3B.4C.5D.6
【答案】B
【解析】
【分析】
由众数的定义求出x=5,再根据中位数的定义即可解答.
【详解】
解:
∵数据2,x,3,3,5的众数是3和5,
∴x=5,
则数据为2、3、3、5、5、6,这组数据为
=4.
故答案为B.
【点睛】
本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.
4.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( )
A.平均数是6
B.中位数是6.5
C.众数是7
D.平均每周锻炼超过6小时的人数占该班人数的一半
【答案】A
【解析】
【分析】
根据中位数、众数和平均数的概念分别求得这组数据的中位数、众数和平均数,由图可知锻炼时间超过6小时的有20+5=25人.即可判断四个选项的正确与否.
【详解】
A、平均数为
×(5×7+18×6+20×7+5×8)=6.46,故本选项错误,符合题意;
B、∵一共有50个数据,
∴按从小到大排列,第25,26个数据的平均值是中位数,
∴中位数是6.5,故此选项正确,不合题意;
C、因为7出现了20次,出现的次数最多,所以众数为:
7,故此选项正确,不合题意;
D、由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;
故选A.
【点睛】
此题考查了中位数、众数和平均数的概念等知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
5.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
决赛成绩/分
95
90
85
80
人数
4
6
8
2
那么20名学生决赛成绩的众数和中位数分别是()
A.85,90B.85,87.5C.90,85D.95,90
【答案】B
【解析】
试题解析:
85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:
1.众数;2.中位数
6.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按
记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()
A.84分B.85分C.86分D.87分
【答案】A
【解析】
【分析】
按照笔试与面试所占比例求出总成绩即可.
【详解】
根据题意,按照笔试与面试所占比例求出总成绩:
(分)
故选A
【点睛】
本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.
7.对于一组统计数据:
1,1,4,1,3,下列说法中错误的是( )
A.中位数是1B.众数是1
C.平均数是1.5D.方差是1.6
【答案】C
【解析】
【分析】
将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.
【详解】
解:
将数据重新排列为:
1、1、1、3、4,
则这组数据的中位数1,A选项正确;
众数是1,B选项正确;
平均数为
=2,C选项错误;
方差为
×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;
故选:
C.
【点睛】
本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.
8.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:
甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则
等于( )
A.
B.
C.
D.
【答案】D
【解析】
【分析】
根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.
【详解】
解:
∵甲、乙两种糖果,原价分别为每千克a元和b元,
两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,
∴两种糖果的平均价格为:
,
∵甲种糖果单价下降15%,乙种糖果单价上涨20%,
∴两种糖果的平均价格为:
,
∵按原比例混合的糖果单价恰好不变,
∴
=
,
整理,得
15ax=20by
∴
,
故选:
D.
【点睛】
本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.
9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:
分数/分
80
85
90
95
人数/人
3
4
2
1
那么,这10名选手得分的中位数和众数分别是( )
A.85.5和80B.85.5和85C.85和82.5D.85和85
【答案】D
【解析】
【分析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据85出现了4次,最多,故为众数;
按大小排列第5和第6个数均是85,所以中位数是85.
故选:
D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
10.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()
A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较
【答案】A
【解析】
【分析】
根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.
【详解】
解:
由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,
∵甲班的中位数是104,乙班的中位数是106,
∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,
∴甲优<乙优,
故选:
A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
11.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()
班级
1班
2班
3班
4班
5班
6班
人数
52
60
62
54
58
62
A.平均数是58B.中位数是58C.极差是40D.众数是60
【答案】A
【解析】
分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断
平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:
.
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:
59.
根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是:
62-52=10.
众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组数据的众数为62.
综上所述,说法正确的是:
平均数是58.故选A.
12.2018年国务院机构改革不再保留国家卫生和计划生育委员会,组建国家卫生健康委员会,在修正人口普查数据中的低龄人口漏登后,我们估计了1982-2030年育龄妇女情况.1982年中国15-49岁育龄妇女规模为2.5亿,到2011年达3.8亿人的峰值,2017年降至3.5亿,预计到2030年将降至3.0亿.则数据2.5亿、3.8亿、3.5亿、3.0亿的中位数、平均数、方差分别是()
A.3.25亿、3.2亿、0.245B.3.65亿、3.2亿、0.98
C.3.25亿、3.2亿、0.98D.3.65亿、3亿、0.245
【答案】A
【解析】
【分析】
根据中位数、平均数的定义和方差公式分别进行解答即可.
【详解】
把数据2.5亿、3.8亿、3.5亿、3.0亿按从小到大的顺序排列为:
2.5亿,3.亿,3.5亿,3.8亿,最中间的两个数是3.0亿和3.5亿,所以,这组数据的中位数为:
平均数为:
亿;
方差为:
S2=
×[(2.5-3.2)2+(3.8-3.2)2+(3.5-3.2)2+(3.0-3.2)2]=
×(0.49+0.36+0.09+0.04)=0.245
故选A.
【点睛】
本题考查了中位数、平均数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为
,则方差S2=
.
13.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;
14.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:
尺码(cm)
23.5
24
24.5
25
25.5
销售量(双)
1
2
2
5
1
则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()
A.25,25B.24.5,25C.25,24.5D.24.5,24.5
【答案】A
【解析】
【分析】
【详解】
解:
从小到大排列此数据为:
23.5、24、24、24.5、24.5、25、25、25、25、25、26,
数据25出现了五次最多为众数.
25处在第6位为中位数.所以中位数是25,众数是25.
故选:
A.
15.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()
A.四位同学身高的中位数一定是其中一位同学的身高
B.丁同学的身高一定高于其他三位同学的身高
C.丁同学的身高为1.71米
D.四位同学身高的众数一定是1.65
【答案】C
【解析】
【分析】
根据平均数,中位数,众数的定义求解即可.
【详解】
解:
、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;
、丁同学的身高一定高于其他三位同学的身高,错误;
、丁同学的身高为
米,正确;
.四位同学身高的众数一定是1.65,错误.
故选:
.
【点睛】
本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.
16.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:
米)
2.10
2.20
2.25
2.30
2.35
2.40
2.45
2.50
人数
2
3
2
4
5
2
1
1
则下列叙述正确的是( )
A.这些运动员成绩的众数是5
B.这些运动员成绩的中位数是2.30
C.这些运动员的平均成绩是2.25
D.这些运动员成绩的方差是0.0725
【答案】B
【解析】
【分析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
17.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
【答案】A
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.
平均成绩一样,小明的方差小,成绩稳定,
故选A.
【点睛】
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析容易题.失分原因是方差的意义掌握不牢.
18.一组数据,6、4、
、
、
的平均数是5,这组数据的方差为()
A.8B.5C.6D.3
【答案】A
【解析】
【分析】
先由平均数的公式计算出a的值,再根据方差的公式计算即可.
【详解】
∵数据6、4、a、3、2平均数为5,
∴(6+4+2+3+a)÷5=5,
解得:
a=10,
∴这组数据的方差是
[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.
故选:
A.
【点睛】
此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
19.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
【答案】B
【解析】
【分析】
根据平均数、方差的定义计算即可.
【详解】
∵小亮的成绩和其它39人的平均数相同,都是90分,
∴40人的平均数是90分,
∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,
∴40人的方差为[41×39+(90-90)2]÷40<41,
∴方差变小,
∴平均分不变,方差变小
故选B.
【点睛】
本题考查了平均数与方差,熟练掌握定义是解题关键.
20.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数
和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择( )
队员1
队员2
队员3
队员4
平均数
51
50
51
50
方差S2
3.5
3.5
7.5
8.5
A.队员1B.队员2C.队员3D.队员4
【答案】B
【解析】
【分析】
根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.
【详解】
解:
因为队员1和2的方差最小,所以这俩人的成绩较稳定,
但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.
故选B.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 易错题 精选 初中 数学 数据 分析 基础 测试 答案 解析