圆的面积教案十篇.docx
- 文档编号:27117364
- 上传时间:2023-06-27
- 格式:DOCX
- 页数:40
- 大小:37.04KB
圆的面积教案十篇.docx
《圆的面积教案十篇.docx》由会员分享,可在线阅读,更多相关《圆的面积教案十篇.docx(40页珍藏版)》请在冰豆网上搜索。
圆的面积教案十篇
圆的面积教案十篇
圆的面积教案篇1
一、复习导入
1.课件出示圆:
关于圆这个图形,你已经了解了一些什么?
学生口答。
2.那么你还想学习关于圆的哪些知识呢?
(课件显示什么是圆的面积)
二、教学例7
1.初步猜想:
猜一猜圆的面积可能与什么有关?
2.实验验证:
圆的面积与半径或直径究竟有着怎样的关系呢?
我们可以来做个实验。
(1)教师逐步出示例题中的第一幅图:
先出示正方形,再以。
正方形的边长为半径画一个圆。
提问:
①图中正方形的面积与圆的半径有什么关系?
②猜一猜,圆的面积大约是正方形的几倍?
(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。
)
出示方格图后指出:
可以用数方格的方法再来验证刚才的猜想。
提问:
想一想,我们怎样去数方格?
学生交流时注意引导:
①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。
在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。
(2)指出:
只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。
让学生观察例题中的下面两幅图,计算并填写图下的表格。
3.交流归纳:
从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?
学生交流中相机总结:
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径·平方的丌倍。
三、教学例8
1.谈话导人:
经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。
那么圆的面积究竟应该怎样来计算呢?
我们继续学习。
2.操作体验:
教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。
提问:
拼成的图形像个什么图形?
追问:
为什么说它像一个平行四边形?
(拼成的图形上下的边不够直)
3.初步想像:
如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?
用实物或投影演示,验证或修正学生的想像。
4.进一步想像:
如果将圆平均分成64份、128份……也用类似的方法拼一拼。
闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。
5.推导公式。
(1)拼成的长方形与原来的圆有什么联系?
在小组里讨论交流。
交流中借助图示小结:
长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。
追问:
如果圆的半径是厂,长方形的长和宽各应怎样表示?
(重点引导学生理解c/2=2πr/2=πr)
(2)根据长方形面积的计算方法,怎样来计算圆的面积?
根据学生的回答,完成形如教科书第105页上的板书,并得出公式:
S=πr。
追问:
①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?
②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
6.做“练一练”。
核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。
四、教学例9
1.谈话导人:
在日常生活中,经常会遇到与圆面积计算有关的实际问题:
2.出示例9。
学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。
3.学生独立列式解答,并组织交流。
五、做练习十九的第1题
1.指名读题,并要求说说对题意的理解。
2.学生独立尝试解答。
3.反馈交流。
对解答错误的学生帮助其分析错误的原因。
六、全课小结
今天这节课,你有什么收获?
(重点引导关注:
圆的面积公式是怎样的?
我们是怎样推导出圆的面积公式的?
解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?
等等。
圆的面积教案篇2
教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。
通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:
一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。
最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。
因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:
正确掌握圆面积的计算公式。
教学难点:
圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:
请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:
我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:
这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:
这个圆形的中心就是喷头所在的地方。
师:
请大家说说这个圆形的面积指的是哪部分呢?
生4:
被喷到水的草坪大小就是这个圆形的面积。
师:
今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。
(板书:
圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:
正方形的边长与圆的什么有关系?
如果半径是r,正方形的面积是多少?
板书:
正方形的边长=圆的半径r
正方形的面积=r2
2、猜想:
圆的面积是正方形面积的多少倍?
你是怎样想的?
3、教学例7
⑴谈话:
刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。
课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:
通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:
S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。
请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:
请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?
(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:
因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?
(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:
“老师的家中新买了一张圆桌,你们想看吗?
(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?
(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天这节课你学到了什么?
2、圆面积的计算方法,我们是怎样探索出来的?
3、小结:
这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。
六、布置作业
1.第107页的第1-3题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
七、板书设计:
圆的面积
S=r2×3倍多
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
教学反思
本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。
在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。
在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。
重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。
圆的面积教案篇3
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?
(指名用手指一指。
)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:
圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?
我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?
(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。
圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。
)
指名发言。
(在幻灯前边说边摆。
)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
等等
刚才,我们用不同思路都能推导出圆面积的公式是:
S=r2。
这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:
它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?
如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:
分米)d=6(单位:
分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。
(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。
培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。
同时,还注意培养学生逻辑推理的能力。
圆的面积教案篇4
一、教材内容分析
新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。
因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。
并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。
二、学习者特征分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。
因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。
因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。
并且能应用公式解决一些生活实际问题。
三、教学目标(知识,技能,情感态度、价值观)
1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。
3、通过实例引入,让学生体验数学________于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣
数学________于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。
而且在直观的动画情境中很好地展示了圆的面积概念。
使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、注重实践操作,有意识地培养学生获取知识的能力
学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。
这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。
通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。
这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、注重学法指导,有意识地引导学生应用转化的方法
本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”,并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:
长方形、三角形、梯形。
通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。
整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。
从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、注重媒体应用,有意识地突破学生学习知识的难点
利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。
这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。
五、教学环境及资源准备
用多媒体课件,圆形卡片辅助教学
六、教学过程
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:
分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1)转化后长方形的长相当于什么?
宽相当于什么?
2)你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果。
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
总结
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
圆的面积教案篇5
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
教具准备:
多媒体课件二套,圆片。
一。
情景导入
1、师:
(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:
它能吃光全部青草吗?
它最多能吃到哪个范围内的青草?
请大家画出这只羊活动范围的示意图,两位同学到黑板上画。
(一位画的是周长,另一位画的是面积。
)(动画演示)
师:
这个范围的大小指圆的周长还是面积?
为什么?
谁画的正确,(圆的面积)。
(板书:
圆的面积)
2.师:
什么是圆的面积?
先说,再看书,学生读,(教师用课件演示)
师:
看到这个课题后,你们会想到什么?
这堂课要解决什么问题呀?
生:
这堂课我们要学习圆的面积是怎样求出来的。
生:
学生圆的面积公式。
师:
你们知道圆的面积公式后,你们还想到什么问题?
生:
圆的面积公式根据什么推导出来的。
师:
对!
刚才这几位同学跟老师想的一样。
这堂课我们要解决两个问题。
(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。
通过学生提出问题,明确学习目标。
)
二、动手操作,探索新知
1.猜测(每项用课件出示)
师:
我们先用一个简单办法,猜想一下圆面积的公式。
把一个圆4等分,用半径作边长画一个正方形。
这个正方形的面积可用r2表示。
在这个圆上可以画同样的4个正方形,它们的面积可以用4r2表示,你们观察一下这个圆的面积等不等于4r2?
生:
不等。
师:
为什么?
生:
因为,这个圆面积还要加上外面的4小块,才是4r2。
师:
这个圆的面积比4r2小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?
生:
这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。
师:
圆的面积和正方形比较谁的面积大?
生:
圆的面积大
师:
可以观察出圆的面积范围在2r2-4r2
(这里让学生了解解决问题时要善于观察、敢于猜想。
渗透无限等数学思想,)
2.回忆旧知,
师:
圆能不能直接用面积单位支量呢?
为什么?
生:
因为圆是由曲线围成的,用面积单位直接量是有困难的。
师:
该怎么办呢?
(教室沉默)
师:
请同学们看屏幕,(师播放课件)边看边回忆:
以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?
(用投影机放出几种图形的转化图解,边出示,边讨论)
师:
这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?
生:
我们可以用图形转化的方法,求圆的面积。
(把未知的转化为已知的)
师:
这个办法很好。
那么把圆形转化成什么图形呢?
[评:
启发学生运用转化的数学思想解决问题。
这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。
]
3.动手操作
(1)师:
请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作。
)
师:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 面积 教案