空间中直线与直线之间的位置关系PPT课件.ppt
- 文档编号:2710102
- 上传时间:2022-11-08
- 格式:PPT
- 页数:44
- 大小:1.21MB
空间中直线与直线之间的位置关系PPT课件.ppt
《空间中直线与直线之间的位置关系PPT课件.ppt》由会员分享,可在线阅读,更多相关《空间中直线与直线之间的位置关系PPT课件.ppt(44页珍藏版)》请在冰豆网上搜索。
新课导入同一平面内的直线有哪些位置关系?
同一平面内的直线有哪些位置关系?
aboab相交相交相交相交平行平行平行平行回顾旧知回顾旧知abo如何判断两直线相交?
如何判断两直线相交?
两直线有公共交点。
两直线有公共交点。
如何判断两直线平行?
如何判断两直线平行?
两直线在同一平面,且无公共交点。
两直线在同一平面,且无公共交点。
ab立交桥立交桥黑板两侧所在的直线与课桌边沿所黑板两侧所在的直线与课桌边沿所在直线是什么位置关系?
在直线是什么位置关系?
既非平行既非平行又非相交又非相交定义定义1:
不同不同在在任何一个平面内任何一个平面内的两条直线的两条直线叫做异面直线。
叫做异面直线。
注:
注:
概念应理解为概念应理解为:
“经过这两条直线无法作出一个平面经过这两条直线无法作出一个平面”.或或:
“不不可可能能找找到到一一个个平平面面同同时时经经过过这这两两条条直直线线”定义定义2:
不相交也不平行不相交也不平行两条直线叫做两条直线叫做异面直线。
异面直线。
注意注意:
分别在某两个平面内的两条直线不一定分别在某两个平面内的两条直线不一定是异面直线是异面直线,它们可能是相交它们可能是相交,也可能是平行也可能是平行.异面直线异面直线:
空间两直线的位置关系:
空间两直线的位置关系:
(1)从公共点的数目来看,可分为:
从公共点的数目来看,可分为:
有且只有一个公共点有且只有一个公共点两直线相交两直线相交没有公共点没有公共点两直线平行两直线平行两直线为异面直线两直线为异面直线
(2)从平面的性质来讲,可分为:
从平面的性质来讲,可分为:
两直线相交两直线相交在同一平面内在同一平面内两直线平行两直线平行不在同一平面内不在同一平面内两直线为异面直线两直线为异面直线异面直线的画法异面直线的画法:
AbababaA1B1C1D1CBDA练习:
如图:
正方体的棱所在的直线中,练习:
如图:
正方体的棱所在的直线中,与直线与直线A1B异面的有哪些?
异面的有哪些?
答案答案:
D1C1、C1C、CD、D1D、AD、B1C1下图是一个正方体的展开图,如果将它还原下图是一个正方体的展开图,如果将它还原为正方体,那么为正方体,那么AB,CD,EF,GH这四条线段这四条线段所在的直线是异面直线的有所在的直线是异面直线的有对。
对。
DBACEFHG3直线直线EF和直线和直线HG直线直线AB和直线和直线HG直线直线AB和直线和直线CD探探探探究究究究课本P45想一想想一想,做一做:
做一做:
1.1.已知已知MM、NN分别是长方体的棱分别是长方体的棱CC11DD11与与CCCC11上的上的点,那么点,那么MNMN与与ABAB所在的直线所在的直线是异面直线是异面直线吗吗?
在正方体在正方体A1B1C1D1-ABCD中,说出下列各对线段中,说出下列各对线段的位置关系的位置关系ABCDA1B1C1D1
(1)AB和和C1D1;
(2)A1C1和和AC;(3)A1C和和D1B:
(4)AB和和CC1;(5)BD1和和A1C1;问题:
问题:
在同一平面内,平行于同一条直在同一平面内,平行于同一条直线的两直线平行,在空间中此结论仍成线的两直线平行,在空间中此结论仍成立吗?
立吗?
平行平行吗?
中中,观察察:
如如图2.1.2-5,长方体方体与与那么那么DDAABBAA公理公理4:
平行于同一条直线的两条直线互相平行于同一条直线的两条直线互相平行。
平行。
公理公理44实质上是说实质上是说平行具有传递性平行具有传递性,在平面、空间,在平面、空间这个性质都适用。
这个性质都适用。
公理公理44作用:
作用:
判断空间两条直线平行的依据。
判断空间两条直线平行的依据。
abcbac符号表示:
符号表示:
设空间中的三条直线分别为设空间中的三条直线分别为a,b,c,若若想一想想一想:
空间中空间中,如果两条直线都与第三条直如果两条直线都与第三条直线垂直线垂直,是否也有类似的规律是否也有类似的规律?
例题示范例题示范例例1:
在空间四边形在空间四边形ABCD中,中,E,F,G,H分分别是别是AB,BC,CD,DA的中点。
的中点。
求证:
四边形求证:
四边形EFGH是平行四边形。
是平行四边形。
分析:
分析:
欲证欲证EFGH是一个平行四边形是一个平行四边形只只需需证证EHFG且且EHFGE,F,G,H分别是各边中点分别是各边中点连结连结BD,只只需需证证:
EHBD且且EHBDFGBD且且FGBDABDEFGHC例题示范例题示范例例1:
在空间四边形在空间四边形ABCD中,中,E,F,G,H分分别是别是AB,BC,CD,DA的中点。
的中点。
求证:
四边形求证:
四边形EFGH是平行四边形。
是平行四边形。
ABDEFGHCEH是是ABD的中位线的中位线EHBD且且EH=BD同理,同理,FGBD且且FG=BDEHFG且且EH=FGEFGH是一个平行四边形是一个平行四边形证明:
证明:
连结连结BD变式一:
变式一:
在例在例2中,如果再加上条件中,如果再加上条件AC=BD,那,那么四边形么四边形EFGH是什么图形是什么图形?
EHFGABCD分析:
分析:
在例题在例题2的基础上的基础上我们只需要证明平行四我们只需要证明平行四边形的两条邻边相等。
边形的两条邻边相等。
菱形菱形变式二:
变式二:
空间四面体空间四面体A-BCD中中,E,H分别是分别是AB,AD的中点的中点,F,G分别是分别是CB,CD上的点上的点,且且,求证求证:
四边形四边形ABCD为梯形为梯形.ABCDEHFG分析:
需要证明四边形分析:
需要证明四边形ABCD有有一组对边平行,但不相等。
一组对边平行,但不相等。
、一条直线与两条异面直线中的一条相交,、一条直线与两条异面直线中的一条相交,那么它与另一条之间的位置关系是()那么它与另一条之间的位置关系是()、平行、相交、平行、相交、异面、可能平行、可能相交、可能异面、异面、可能平行、可能相交、可能异面、两条异面直线指的是()、两条异面直线指的是()、没有公共点的两条直线、没有公共点的两条直线、分别位于两个不同平面的两条直线、分别位于两个不同平面的两条直线、某一平面内的一条直线和这个平面外的一条直线、某一平面内的一条直线和这个平面外的一条直线、不同在任何一个平面内的两条直线、不同在任何一个平面内的两条直线练习:
练习:
DD3、下列命题中,其中正确的是、下列命题中,其中正确的是()若两条直线没有公共点,则这两条直线互相平行)若两条直线没有公共点,则这两条直线互相平行()若两条直线都和第三条直线相交,那么这两条直线()若两条直线都和第三条直线相交,那么这两条直线互相平行互相平行()若两条直线都和第三条直线平行,那么这两条直线)若两条直线都和第三条直线平行,那么这两条直线互相平行互相平行()若两条直线都和第三条直线异面,那么这两条直线)若两条直线都和第三条直线异面,那么这两条直线互相平行互相平行(3)4、三个平面两两相交,所得的三条交线()、三个平面两两相交,所得的三条交线()、交于一点、互相平行、交于一点、互相平行、有两条平行、或交于一点或互相平行、有两条平行、或交于一点或互相平行D同一平面内:
等角等角定理定理定理:
定理:
空间中如果两个角的两边分别对应平行,那空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
么这两个角相等或互补。
在在平面内两直线相交成四个角,平面内两直线相交成四个角,不大于不大于90的角成为夹角的角成为夹角。
ab夹角刻画了一条直线对另一条直线的倾斜夹角刻画了一条直线对另一条直线的倾斜程度,异面直线通过程度,异面直线通过异面直线所称的角异面直线所称的角来刻画。
来刻画。
夹角O异面直线所成的角异面直线所成的角为简便,为简便,O点常取点常取在某一直线上在某一直线上异面直线所成角的定义:
异面直线所成角的定义:
直线直线a、b是异面直线是异面直线,经过空间任意一点经过空间任意一点O,分别引直线分别引直线a1a,b1b,把直线把直线a1和和b1所成的锐角所成的锐角(或直角或直角)叫做叫做异面异面直线直线a和和b所成的角所成的角。
平平移移法法异面直线异面直线a和和b所成的角的范围:
所成的角的范围:
异面直线所成的角异面直线所成的角如果两条异面直线所成的角为直角,如果两条异面直线所成的角为直角,就说两条直线互相垂直,记作就说两条直线互相垂直,记作abab。
强调强调:
1)范围范围2)与与0的位置无关的位置无关;3)为了方便点为了方便点O选取应有利于解选取应有利于解决问题,可取特殊点决问题,可取特殊点(如如a或或b上上);4)找两条异面直线所成的角,找两条异面直线所成的角,要作平行移动要作平行移动(平行线平行线),把两条异面,把两条异面直线所成的角,直线所成的角,转化转化为两条相交直线为两条相交直线所成的角所成的角.
(1)在长方体)在长方体ABCD-ABCD中,有没有两条中,有没有两条棱所在的直线是相互垂直的异面直线?
棱所在的直线是相互垂直的异面直线?
探探探探究究究究有,如有,如AB和和CC,AB和和DD。
课本P47垂直垂直
(2)如果两条平行直线中的一条与某一条直线)如果两条平行直线中的一条与某一条直线垂直,那么另一条直线是否也与这条直线垂直?
垂直,那么另一条直线是否也与这条直线垂直?
垂直分为两种:
垂直分为两种:
相交直线的垂直相交直线的垂直异面直线的垂直异面直线的垂直(3)垂直于同一条直线的两条直线是否平行?
)垂直于同一条直线的两条直线是否平行?
如图,若如图,若c,则,则c垂直于垂直于内所有直线,内所有直线,而而内任意两条直线的关系可能是平行,也可能内任意两条直线的关系可能是平行,也可能是相交。
是相交。
不一定不一定例题示范例题示范例例22、如图,已知正方体、如图,已知正方体ABCDABCDABCDABCD中。
中。
(11)哪些棱所在直线与直线)哪些棱所在直线与直线BABA是异面直线?
是异面直线?
(22)直线)直线BABA和和CCCC的夹角是多少?
的夹角是多少?
(33)哪些棱所在的直线与直线)哪些棱所在的直线与直线AAAA垂直?
垂直?
解:
(解:
(11)由异面直线的判)由异面直线的判定方法可知,与直线定方法可知,与直线成异面直线的有直线成异面直线的有直线,例题示范例题示范例例22、如图,已知正方体、如图,已知正方体ABCDABCDABCDABCD中。
中。
(11)哪些棱所在直线与直线)哪些棱所在直线与直线BABA是异面直线?
是异面直线?
(22)直线)直线BABA和和CCCC的夹角是多少?
的夹角是多少?
(33)哪些棱所在的直线与直线)哪些棱所在的直线与直线AAAA垂直?
垂直?
解:
(解:
(22)由)由可知,可知,等于异面直线等于异面直线与与的夹的夹角角,所以异面直线所以异面直线与与的夹角的夹角为为454500。
(3)直线直线与直线与直线都垂直都垂直.练习反馈:
练习反馈:
1.1.判断判断:
(11)平行于同一直线的两条直线平行)平行于同一直线的两条直线平行.()(22)垂直于同一直线的两条直线平行)垂直于同一直线的两条直线平行.()(33)过直线外一点,有且只有一条直线与已知)过直线外一点,有且只有一条直线与已知直线平行直线平行.()(44)与已知直线平行且距离等于定长的直线只)与已知直线平行且距离等于定长的直线只有两条有两条.()(55)若一个角的两边分别与另一个角的两边平)若一个角的两边分别与另一个角的两边平行,那么这两个角相等(行,那么这两个角相等()(66)若两条相交直线和另两条相交直线分别平)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等行,那么这两组直线所成的锐角(或直角)相等.()练习反馈:
练习反馈:
22选择题选择题(11)“aa,bb是异面直线是异面直线”是指是指aabb=,且且aa不平行于不平行于bb;aa平面平面aa,bb平面平面bb且且aabb=aa平面平面aa,bb平面平面aa不存在平面不存在平面aa,能使,能使aaaa且且bbaa成立成立上述结论中,正确的是上述结论中,正确的是()(AA)(BB)(CC)(DD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 直线 之间 位置 关系 PPT 课件