五年级奥数举一反三第19讲 组合图形的面积二含答案.docx
- 文档编号:26905124
- 上传时间:2023-06-23
- 格式:DOCX
- 页数:11
- 大小:131.20KB
五年级奥数举一反三第19讲 组合图形的面积二含答案.docx
《五年级奥数举一反三第19讲 组合图形的面积二含答案.docx》由会员分享,可在线阅读,更多相关《五年级奥数举一反三第19讲 组合图形的面积二含答案.docx(11页珍藏版)》请在冰豆网上搜索。
五年级奥数举一反三第19讲组合图形的面积二含答案
第19讲组合图形的面积
(二)
一、知识要点
在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:
1.两个三角形等底、等高,其面积相等;
2.两个三角形底相等,高成倍数关系,面积也成倍数关系;
3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练
【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:
厘米)
练习1:
1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:
厘米)
3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
练习2:
1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?
(单位:
平方厘米)
练习3:
1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?
2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?
3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?
【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:
1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
已知三角形的面积是108平方厘米,求三角形CDE的面积。
3.下图中,BD=2厘米,DE=4厘米,EC=2厘米,F是AE的中点,三角形ABC的BC边上的高是4厘米,阴影面积是多少平方厘米?
【例题5】边长是9厘米的正三角形的面积是边长为3厘米的正三角形面积的多少倍?
练习5:
1.边长是8厘米的正三角形的面积是边长为2厘米的正三角形面积的多少倍?
2.一个梯形与一个三角形等高,梯形下底的长是上底的2倍,梯形上底的长又是三角形底长的2倍。
这个梯形的面积是三角形面积的多少倍?
3.有两种自然的放法将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是36平方厘米,两个正方形的面积分别是多少?
第19讲组合图形的面积
(二)
一、知识要点
在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:
1.两个三角形等底、等高,其面积相等;
2.两个三角形底相等,高成倍数关系,面积也成倍数关系;
3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练
【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:
厘米)
【思路导航】按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。
其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。
面积是:
6×3÷2=9平方厘米。
练习1:
1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:
厘米)
3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【答案】1.25×10÷2=125(平方厘米)
2.28×20÷2=280(平方厘米)(40-28)÷2×20÷2=60(平方厘米)
阴影面积=280+60×2=400(平方厘米)
3.50×80-(1×50+80×1+1×1)=3869(平方米)
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
【思路导航】三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。
阴影部分的面积是:
7.5÷(1+1.5)×1.5=45。
练习2:
1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【答案】1.三角形AFE的面积是5×4÷2=10(平方厘米)
2.阴影面积=10×(10+6)÷2-10×10÷2=30(平方厘米)
3.阴影面积=(3+9)×8÷2=48(平方厘米)
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?
(单位:
平方厘米)
【思路导航】1.因为三角形ABD与三角形ACD等底等高,所以面积相等。
因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。
2.因为三角形BOC的面积是三角形DOC面积的2倍,所以BO的长度是OD的2倍,即三角形ABO的面积也是三角形AOD的2倍。
所以,三角形AOD的面积是6÷2=3平方厘米。
练习3:
1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?
2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?
3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?
【答案】1.梯形面积是18平方厘米
2.梯形ABCD的面积是三角形BDE面积的3倍
3.(12-7)×8÷2=20(平方厘米)
【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
【思路导航】
(1)因为CE=3AE,所以,三角形ADC的面积是三角形ADE面积的4倍,是20×(1+3)=80平方厘为;
(2)又因为DC=2BD,所以,三角形ABD的面积是三角形ADC面积的一半,是80÷2=40平方厘米。
因此,三角形ABC的面积是80+40=120平方厘主。
练习4:
1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
已知三角形的面积是108平方厘米,求三角形CDE的面积。
3.下图中,BD=2厘米,DE=4厘米,EC=2厘米,F是AE的中点,三角形ABC的BC边上的高是4厘米,阴影面积是多少平方厘米?
【答案】1.=(甲和乙等底等高)
2.108÷2÷3=18(平方厘米)
3.阴影面积是4平方厘米
【例题5】边长是9厘米的正三角形的面积是边长为3厘米的正三角形面积的多少倍?
【思路导航】题中的已知条件不能计算出两种三角形的面积,我们可以用边长是3厘米的正三角形拼一个边长是9厘米的正三角形,从而看出它们之间的倍数关系。
从下图中可以看出:
边长9厘米的正三角形是边长3厘米的正三角形面积的9倍。
练习5:
1.边长是8厘米的正三角形的面积是边长为2厘米的正三角形面积的多少倍?
2.一个梯形与一个三角形等高,梯形下底的长是上底的2倍,梯形上底的长又是三角形底长的2倍。
这个梯形的面积是三角形面积的多少倍?
3.有两种自然的放法将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是36平方厘米,两个正方形的面积分别是多少?
【答案】1.通过拼图发现,边长是8厘米的正三角形面积是边长为2厘米的正三角面积的1+3+5+7=16(倍)
2.梯形面积是三角形面积的6倍
3.
(1)中正方形面积是36÷2=18(平方厘米)
(2)中正方形面积是36÷9×4=16(平方厘米)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 五年级奥数举一反三第19讲 组合图形的面积二含答案 年级 举一反三 19 组合 图形 面积 答案