方位角.ppt
- 文档编号:2687739
- 上传时间:2022-11-07
- 格式:PPT
- 页数:13
- 大小:462.50KB
方位角.ppt
《方位角.ppt》由会员分享,可在线阅读,更多相关《方位角.ppt(13页珍藏版)》请在冰豆网上搜索。
解直角三角形(解直角三角形(33)指南或指北的方向线与目标方向线构成小于指南或指北的方向线与目标方向线构成小于900的角的角,叫做方位角叫做方位角.如图:
点如图:
点A在在O的北偏东的北偏东30点点B在点在点O的南偏西的南偏西45(西南方向)(西南方向)3045BOA东东西西北北南南方位角方位角利用利用解直角三角形解直角三角形的知识的知识解决实际问题解决实际问题的的一般过程是一般过程是:
1.将实际问题抽象为数学问题将实际问题抽象为数学问题;(画出平面图形画出平面图形,转化为解直角三角形的问题转化为解直角三角形的问题)2.根据条件的特点根据条件的特点,适当选用锐角三角函数等去解直角三角形适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案得到数学问题的答案;4.得到实际问题的答案得到实际问题的答案.1.如图所示,轮船以如图所示,轮船以32海里每小时的速海里每小时的速度向正北方向航行,在度向正北方向航行,在A处看灯塔处看灯塔Q在轮在轮船的北偏东船的北偏东30处,半小时航行到处,半小时航行到B处,处,发现此时灯塔发现此时灯塔Q与轮船的距离最短,求与轮船的距离最短,求灯塔灯塔Q到到B处的距离(画出图像后再计算)处的距离(画出图像后再计算)ABQ30相信你能行相信你能行例例1.如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东60方向,距离方向,距离灯塔灯塔80海里的海里的A处,它沿正南方向航行一段时间后,到处,它沿正南方向航行一段时间后,到达位于灯塔达位于灯塔P的南偏东的南偏东30方向上的方向上的B处,这时,海轮所处,这时,海轮所在的在的B处距离灯塔处距离灯塔P有多远?
有多远?
(精确到(精确到0.01海里)海里)6030PBCA例例4.海中有一个小岛海中有一个小岛A,它的周围,它的周围8海里范围内有暗礁,海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在渔船跟踪鱼群由西向东航行,在B点测得小岛点测得小岛A在北偏在北偏东东60方向上,航行方向上,航行12海里到达海里到达D点,这时测得小岛点,这时测得小岛A在在北偏东北偏东30方向上,如果渔船不改变航线继续向东航行,方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?
有没有触礁的危险?
BAADF601230BADF解:
由点解:
由点A作作BD的垂线的垂线交交BD的延长线于点的延长线于点F,垂足为,垂足为F,AFD=90由题意图示可知由题意图示可知DAF=30设设DF=x,AD=2x则在则在RtADF中,根据勾股定理中,根据勾股定理在在RtABF中,中,解得解得x=610.48没有触礁危险没有触礁危险3060A22如图所示,一渔船上的渔民在如图所示,一渔船上的渔民在AA处看见灯处看见灯塔塔MM在北偏东在北偏东6060方向,这艘渔船以方向,这艘渔船以2828海里海里/时的速度向正东航行,半小时至时的速度向正东航行,半小时至BB处,在处,在BB处处看见灯塔看见灯塔MM在北偏东在北偏东1515方向,此时灯塔方向,此时灯塔MM与与渔船的距离是渔船的距离是()()A.A.海里海里B.B.海里海里C.7C.7海里海里D.14D.14海里海里D气象台发布的卫星云图显示,代号为气象台发布的卫星云图显示,代号为W的台风的台风在某海岛(设为点在某海岛(设为点O)的南偏东)的南偏东45方向的方向的B点点生成,测得生成,测得台风中心从点台风中心从点B以以40km/h的速度向正北方向移动,经的速度向正北方向移动,经5h后到达海后到达海面上的点面上的点C处因受气旋影响,台风中心从点处因受气旋影响,台风中心从点C开始以开始以30km/h的速度向北偏西的速度向北偏西60方向继续移动方向继续移动以以O为原点建立如图为原点建立如图12所示的直角坐标系所示的直角坐标系x/kmy/km北东AOBC图12
(1)台风中心生成点)台风中心生成点B的坐标为的坐标为,台风,台风中心转折点中心转折点C的坐标为的坐标为;(结果保留根号);(结果保留根号)
(2)已知距台风中心)已知距台风中心20km的范围内均会受到台的范围内均会受到台风的侵袭如果某城市(设为风的侵袭如果某城市(设为A点)位于点点)位于点O的的正北方向且处于台风中心的移动路线上,那么台正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?
风从生成到最初侵袭该城要经过多长时间?
x/kmy/km北东AOBC图12解:
(1)
(2)过点)过点C作作于点于点D,如图,如图2,则,则在在中中台风从生成到最初侵袭该城要经过台风从生成到最初侵袭该城要经过11小时小时x/kmy/kmAOBC图图2D11数形结合思想数形结合思想.方法:
方法:
可添加适当的辅助线,把一般三角形可添加适当的辅助线,把一般三角形问题问题转化成解直角三角形转化成解直角三角形问题问题.思想与方法思想与方法22方程思想方程思想.33转化(化归)思想转化(化归)思想.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方位角