浙江省普通高中学业水平考试数学试题及答案 3.docx
- 文档编号:26854492
- 上传时间:2023-06-23
- 格式:DOCX
- 页数:9
- 大小:98.89KB
浙江省普通高中学业水平考试数学试题及答案 3.docx
《浙江省普通高中学业水平考试数学试题及答案 3.docx》由会员分享,可在线阅读,更多相关《浙江省普通高中学业水平考试数学试题及答案 3.docx(9页珍藏版)》请在冰豆网上搜索。
浙江省普通高中学业水平考试数学试题及答案3
2018年1月浙江省普通高中学业水平考试
数学试题
学生须知:
1、本试卷分选择题和非选择题两部分,共6页,满分100分,考试时间110分钟.
2、考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.
3、选择题的答案须用2B铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.
4、非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上的相应区域内,作图时可先使用2B铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试卷上无效.
5、参考公式
柱体的体积公式:
V=Sh锥体的体积公式:
V=
Sh(其中S表示底面积,h表示高)
选择题部分
一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分.每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)
1、设集合M={0,3},N={1,2,3},则M∪N=( )
A.{3}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}
2、函数
的定义域是( )
A.{x|x>
}B.{x|x≠0,x∈R}C.{x|x<
}D.{x|x≠
,x∈R}
3、向量a=(2,1),b=(1,3),则a+b=( )
A.(3,4)B.(2,4)C.(3,-2)D.(1,-2)
4、设数列{an}(n∈N*)是公差为d的等差数列,若a2=4,a4=6,则d=( )
A.4B.3C.2D.1
5、直线y=2x+1在y轴上的截距为( )
A.1B.-1C.
D.-
6、下列算式正确的是( )
A.26+22=28B.26-22=24C.26×22=28D.26÷22=23
7、下列角中,终边在y轴正半轴上的是( )
A.
B.
C.πD.
8、以(2,0)为圆心,经过原点的圆方程为( )
A.(x+2)2+y2=4B.(x-2)2+y2=4C.(x+2)2+y2=2D.(x-2)2+y2=2
9、设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1 A.-2B.-1C.0D.1 10、下列直线中,与直线x-2y+1=0垂直的是( ) A.2x-y-3=0B.x-2y+3=0C.2x+y+5=0D.x+2y-5=0 11、设实数x,y满足 ,则x+2y的最小值为( ) A.-3B.-1C.1D.3 12、椭圆 的离心率为( ) A. B. C. D. 13、一个几何体的三视图如图所示,则该几何体的体积为( ) A.πB.2πC.4πD.8π 14、在△ABC中,设角A,B,C的对边分别为a,b,c。 已知B=45°,C=120°,b=2,则c=( ) A.1B. C.2D. (第13题图) 15、已知函数f(x)的定义域为R,则“f(x)在[-2,2]上单调递增”是“f(-2) (2)”的( ) A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 16、函数f(x)=log2(2x)的图象大致是( ) A. B. C. D. 17、设函数f(x)=sinx+ cosx,x∈R,则f(x)的最小正周期为( ) A. B.πC.2πD.3π 18、如图,直三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC。 若AB=AC=AA1=1,BC= ,则异面直线A1C与B1C1 所成的角为( ) A.30°B.45°C.60°D.90° 19、若函数f(x)=|x|(x-a),a∈R是奇函数,则f (2)的值为( ) A.2B.4C.-2D.-4 (第18题图) 20、若函数f(x)=x- (a∈R)在区间(1,2)上有零点,则a的值可能是( ) A.-2B.0C.1D.3 21、已知数列{an}(n∈N*)是首项为1的等比数列,设bn=an+2n,若数列{bn}也是等比数列, 则b1+b2+b3=( ) A.9B.21C.42D.45 22、设某产品2013年12月底价格为a元(a>0),在2017年的前6个月,价格平均每月比上个月上涨10%,后6个月,价格平均每月比上个月下降10%,经过这12个月,2017年12月底该产品的价格为b元,则a,b的大小关系是( ) A.a>bB.a 23、在空间中,α,β表示平面,m表示直线,已知α∩β=l,则下列命题正确的是( ) A.若m∥l,则m与α,β都平行B.若m与α,β都平行,则m∥l C.若m与l异面,则m与α,β都相交D.若m与α,β都相交,则m与l异面 24、设={(x,y)|x2-y2=1,x>0},点M是坐标平面内的动点。 若对任意的不同两点P,Q∈, ∠PMQ恒为锐角,则点M所在的平面区域(阴影部分)为( ) A. B. C. D. 25、如图,在底面为平行四边形的四棱锥P-ABCD中, E,F分别是棱AD,BP上的动点,且满足AE=2BF, 则线段EF中点的轨迹是( ) A.一条线段B.一段圆弧 C.抛物线的一部分D.一个平行四边形 (第25题图) 非选择题部分 二、填空题(共5小题,每小题2分,共10分) 26、设函数f(x)= ,若f (2)=3,则实数a的值为 27、已知点A(1,1),B(2,4),则直线AB的方程为 28、已知数列{an}(n∈N*)满足an+1=3-an,a1=1,设Sn为{an}的前n项和,则S5= 29、已知a∈R,b>0,且(a+b)b=1,则a+ 的最小值是 30、如图,已知AB⊥AC,AB=3,AC= ,圆A是以A为圆心半径为1的圆,圆B是以B为圆心的圆。 设点P,Q分别为圆A,圆B上的动点,且 ,则 的取值范围是 (第30题图) 三、解答题(共4小题,共30分) 31、(本题7分) 已知 ,求sinx与sin2x的值. 32、(本题7分) 在三棱锥O-ABC中,已知OA,OB,OC两两垂直。 OA=2,OB= ,直线AC与平面OBC所成的角为45°. (I)求证: OB⊥AC; (II)求二面角O-AC-B的大小。 (第31题图) 33、(本题8分) 已知点P(1,3),Q(1,2)。 设过点P的动直线与抛物线y=x2交于A,B两点,直线AQ,BQ与该抛物线的另一交点分别为C,D。 记直线AB,CD的斜率分别为k1,k2. (I)当k1=0时,求弦AB的长; (II)当k1≠2时, 是否为定值? 若是,求出该定值。 (第33题图) 34、(本题8分)设函数f(x)=| -ax-b|,a,b∈R.. (I)当a=0,b=1时,写出函数f(x)的单调区间; (II)当a= 时,记函数f(x)在[0,4]上的最大值为g(b),在b变化时,求g(b)的最小值; (III)若对任意实数a,b,总存在实数x0∈[0,4]使得不等式f(x0)≥m成立,求实数m的取值范围。 浙江省2018年1月学业水平考试第25题解答 25、如图,在底面为平行四边形的四棱锥P-ABCD中, E,F分别是棱AD,BP上的动点,且满足AE=2BF, 则线段EF中点的轨迹是( ) A.一条线段B.一段圆弧 C.抛物线的一部分D.一个平行四边形 (第25题图) 解答: 取AB中点M,作EG平行于AB交BC于G, 连结FG,取GF中点N, 则OMBN为平行四边形,从而MO∥BN。 作CH∥GF于H,取CH中点K。 因为AE=2BF,所以BG=2BF,而∠CBP是确定的角, 故△BGF与△BCH相似,从而N在BK上。 所以O在平行于直线BK的一条直线上。 参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D A D A C B B D C C C B D A 题号 16 17 18 19 20 21 22 23 24 25 答案 A C C B D B A B B A 二、填空题 26、2 27、3x-y-2=0 28、7 29、2 30、[-1,11] 三、解答题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省普通高中学业水平考试数学试题及答案 浙江省 普通高中 学业 水平 考试 数学试题 答案