角平分线的性质、判定》课件.ppt
- 文档编号:2678583
- 上传时间:2022-11-06
- 格式:PPT
- 页数:21
- 大小:1.70MB
角平分线的性质、判定》课件.ppt
《角平分线的性质、判定》课件.ppt》由会员分享,可在线阅读,更多相关《角平分线的性质、判定》课件.ppt(21页珍藏版)》请在冰豆网上搜索。
第第13章章全等三角形全等三角形13.5逆命题与逆定理逆命题与逆定理第第3课时课时角平分线角平分线角角平分线的性质平分线的性质1知识点角平分线的性质角平分线的性质知知22导导我们我们已经知道角是轴对称图形,角平分线所在已经知道角是轴对称图形,角平分线所在的的直直线是角的对称轴线是角的对称轴.如图如图13.5.4,OC是是AOB的平分的平分线线,P是是OC上任上任一点,一点,作作PD丄丄OA,PE丄丄OB,垂足,垂足分别分别为为点点D和点和点E.将将AOB沿沿OC对折对折,我们发现,我们发现PD与与PE完全重合完全重合.由此即有:
由此即有:
回回忆忆角平分线的性质定理角平分线的性质定理:
角平分线上的点到角两边角平分线上的点到角两边的的距离距离相等相等.知知22讲讲1.角平分线的性质定理:
角平分线的性质定理:
角平分线上的点到角两边的角平分线上的点到角两边的距距离离相等相等要点要点精精析:
析:
(1)点一定要在角平分线上;点一定要在角平分线上;
(2)点到角两边点到角两边的的距离距离是指点到角两边垂线段的长度;是指点到角两边垂线段的长度;(3)角平分线的性质角平分线的性质可用可用来来证明两条线段相等证明两条线段相等2书写格式:
书写格式:
如图如图13.512,OP平平分分AOB,PDOA于点于点D,PEOB于于点点E,PDPE.3易错警示:
易错警示:
易找错距离,误以为易找错距离,误以为角角平分线上的点到角的两边的距离就是角平分平分线上的点到角的两边的距离就是角平分线线上的点与角两边上任意点间的距离上的点与角两边上任意点间的距离(此讲解来源于(此讲解来源于点拨点拨)图图13.512知知22讲讲已知已知:
如如图图13.5.4,OC是是AOB的的平分线平分线,点点P是是OC上上的任意一点的任意一点,PD丄丄OA,PE丄丄OB,垂足垂足分别为点分别为点D和点和点E.求证求证:
PD=PE.分析:
分析:
图图中有两个直角三角形中有两个直角三角形PDO和和PEO,只要只要证明证明这这两个三角形全等,便可证两个三角形全等,便可证得得PD=PE.(此讲解来源于教材)(此讲解来源于教材)请写出完整的请写出完整的证明过程证明过程.知知22讲讲例例2如如图图13.513,在,在ABC中,中,C90,AD平分平分CAB,DEAB于于E,F在在AC上,上,BEFC,求,求证:
证:
BDDF.导引:
导引:
要证要证BDDF,可考虑证两,可考虑证两线线段段所在的所在的BDE和和FDC全等全等,两两个三角形中已有一角和个三角形中已有一角和一边一边相等相等,只要再证,只要再证DECD即可即可,这这可由可由AD平分平分CAB及垂直条件证得及垂直条件证得图图13.513(此讲解来源于(此讲解来源于点拨点拨)知知22讲讲证明证明:
AD平分平分CAB,DEAB于于E,C90,DEDC.在在BDE和和FDC中中,EDCD,DEBC,BEFC,BDEFDC,BDDF.(此讲解来源于(此讲解来源于点拨点拨)总结知知22讲讲由角平分线的性质不用证全等可以直接得线段相等,由角平分线的性质不用证全等可以直接得线段相等,这是证线段相等的一个简捷方法这是证线段相等的一个简捷方法.2知识点角平分线的角平分线的判定判定知知11导导这一定理描述了角平分线的性质,那么反过来会有这一定理描述了角平分线的性质,那么反过来会有什么结什么结果呢?
果呢?
你一定发现到角两边距离相等的点的确在该角的你一定发现到角两边距离相等的点的确在该角的平分线上平分线上.我们可以通过我们可以通过“证明证明”说明这一结论正确说明这一结论正确.探探索索条件条件结论结论性质定理性质定理逆命题逆命题写写出出该该定定理理与与逆逆命命题题的的条条件件与与结结论论,想想想想看看,其其逆逆命命题题是是否否是是一一个个真真命命题题?
知知11讲讲角平分线角平分线的判定定理:
的判定定理:
角的内部到角两边距离角的内部到角两边距离相等相等的的点在角的平分线上点在角的平分线上
(1)书写格式:
书写格式:
如图如图13.515,PDOA,PEOB,PDPE,点点P在在AOB的平分线上的平分线上(或或AOCBOC)
(2)作用:
作用:
运用角平分线的判定运用角平分线的判定,可以可以证明两个角证明两个角相等相等或一条射线是角的平分线或一条射线是角的平分线(此讲解来源于(此讲解来源于点拨点拨)图图13.515知知11讲讲已知已知:
如图:
如图13.5.5,QD丄丄OA,QE丄丄OB,点,点D、E为垂为垂足足,QD=QE.求证:
求证:
点点Q在在AOB的的平分线平分线上上.分析:
分析:
为了为了证明证明点点Q在在AOB的平分的平分线上线上,可以作射线可以作射线OQ,然后,然后证明证明RtQDORtQEO,从而从而得到得到AOQ=BOQ.(此讲解来源于教材)(此讲解来源于教材)图图13.5.5知知11讲讲证明证明:
过点过点O、Q作射线作射线OQ.QDOA,QEOB,QDO=BOQ=90.在在RtQDO和和RtQEO中中,OQ=OQ,QD=QE,RtQDORtQEO,(H.L.),DOQ=EOQ(全等三角形的对应角全等三角形的对应角相等相等).点点Q在在AOB的的平分线上平分线上.(此讲解来源于教材)(此讲解来源于教材)知知22讲讲例例3如图如图13.514,在,在ABC中,中,C90,BCAC,AD是是BAC的平分线,的平分线,DEAB于点于点E.若若AB10cm,求,求DBE的周长的周长(此讲解来源于(此讲解来源于点拨点拨)图图13.514归纳知知11讲讲角平分线角平分线的判定定理与的判定定理与性性质质定理的关系:
定理的关系:
(1)如图如图13.516,都都与距离有关:
即条件与距离有关:
即条件PDOA,PEOB都具备;都具备;
(2)点在点在角平分线角平分线上上性质判定性质判定点到角两边的距离相等点到角两边的距离相等图图13.516知知11讲讲例例1如如图图13.516,BECF,DFAC于点于点F,DEAB于点于点E,BF和和CE相交于点相交于点D.求证:
求证:
AD平分平分BAC.导引:
导引:
要证要证AD平分平分BAC,已知已知条件条件中有两个垂直,即中有两个垂直,即有有点点到角的两边的距离,到角的两边的距离,再再证证这两个距离相等即可这两个距离相等即可证证明明结论,证这两条垂线结论,证这两条垂线段段相等相等,可通过证明,可通过证明BDE和和CDF全等来完成全等来完成(此讲解来源于教材)(此讲解来源于教材)图图13.516知知11讲讲证明证明:
DFAC于点于点F,DEAB于点于点E,DEBDFC90.在在BDE和和CDF中中,BDECDF,DEBDFC,BECF,BDECDF,DEDF.又又DFAC于点于点F,DEAB于点于点E,AD平分平分BAC.(此讲解来源于教材)(此讲解来源于教材)1如如图,图,OP平分平分AOB,PAOA,PBOB,垂足分,垂足分别为别为A,B.下列结论中不一定成立的是下列结论中不一定成立的是()2APAPB3BPO平分平分APB4COAOB5DAB垂直平分垂直平分OP知知22练练2如如图,图,OP平分平分MON,PAON于点于点A,Q是射线是射线OM上的一个动点,若上的一个动点,若PA2,则,则PQ的最小值为的最小值为()A1B2C3D4知知22练练3如图,已知在如图,已知在ABC中,中,CD是是AB边上的高,边上的高,BE平分平分ABC,交,交CD于点于点E,BC50,DE14,则,则BCE的面积等于的面积等于_知知22练练角的平分线图形结构中的角的平分线图形结构中的“两种两种数量关系数量关系”:
如图,:
如图,OC平分平分AOB,PDOA于于D,PEOB于于E,DE交交OC于点于点F.
(1)角的相等关系:
角的相等关系:
AOCBOCPDFPEF;ODPOEPDFOEFODFPEFP90;DPOEPOODFOEF.
(2)线段的相等关系:
线段的相等关系:
ODOE,DPEP,DFEF.1运用角平分线的性质解决与面积有关的问题运用角平分线的性质解决与面积有关的问题的方法:
首先运用三角形的面积公式将面积关系转化的方法:
首先运用三角形的面积公式将面积关系转化为线段关系,再结合角平分线的性质进一步转化为三为线段关系,再结合角平分线的性质进一步转化为三角形边长之间的关系,从而把两者建立起关系,结合角形边长之间的关系,从而把两者建立起关系,结合已知条件可解决问题已知条件可解决问题2过角平分线上一点作垂线是解决有关角平分过角平分线上一点作垂线是解决有关角平分线问题最常用的作辅助线的方法线问题最常用的作辅助线的方法判定角平分线的两步:
判定角平分线的两步:
(1)找出与角的两边都垂直的垂线段;找出与角的两边都垂直的垂线段;
(2)证明两条垂线段相等证明两条垂线段相等1.1.必做必做:
完成完成教材教材P98P98,T1T122.补充补充:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平分线 性质 判定 课件