吉林省长春汽车经济技术开发区八年级数学下册 一次函数图像应用题2新版湘教版.docx
- 文档编号:26616393
- 上传时间:2023-06-20
- 格式:DOCX
- 页数:30
- 大小:417.20KB
吉林省长春汽车经济技术开发区八年级数学下册 一次函数图像应用题2新版湘教版.docx
《吉林省长春汽车经济技术开发区八年级数学下册 一次函数图像应用题2新版湘教版.docx》由会员分享,可在线阅读,更多相关《吉林省长春汽车经济技术开发区八年级数学下册 一次函数图像应用题2新版湘教版.docx(30页珍藏版)》请在冰豆网上搜索。
吉林省长春汽车经济技术开发区八年级数学下册一次函数图像应用题2新版湘教版
一次函数图像应用题
1.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.
(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
考点:
一次函数的应用。
点评:
本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.
2.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().
3.某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:
(1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.
考点:
一次函数的应用。
点评:
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
4.(本题满分12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)
之间的函数关系.
求:
(1)线段BC的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?
5.甲、乙两名自行车爱好者准备在一段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系.根据图中信息,回答下列问题:
(1)乙的速度为________米/秒;
(2)当乙追上甲时,求乙距起点多少米.
(3)求线段BC所在直线的函数关系式.
(第24题)
6.甲、乙两同学同时从400m环形跑道上的同一点出犮,同向而行.甲的速度为6m/s,乙的速度为4m/s.设经过x(单位:
s)后,跑道上此两人间的较短部分的长度为y(单位:
m).则y与x(0≤x≤300)之间的函数关系可用图象表示为( )
A、
B、
C、
D、
考点:
函数的图象。
点评:
本题考查利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
7、(本题满分8分)
汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县。
我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县。
甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修。
剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应。
经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇。
为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县。
下图是甲、乙两车离剑阁县的距离y(千米)与时间x(小时)之间的函数图象。
请结合图象信息解答下列问题:
(1)请直接在坐标系中的()内填上数据。
(2)求直线CD的函数解析式,并写出自变量的取
值范围。
(3)求乙车的行驶速度。
8.周六上午8:
00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小名离家的路程y(干米)与x(小时)之间的函致图象如图所示,
(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时;
(2)
求线段CD所表示的函敛关系式;
(3)问小明能否在12:
00前回到家?
若能,请说明理由:
若不能,请算出12:
00时他离家的路程,
【解题思路】
(1)由点(1,30)得小明去基地乘车的平均速度,
由28÷(2÷4)=56得到爸爸开车的平均速度千米/小时。
(2)由题意C(3.7,28),D(4.2,0),待定系数法得线段CD的表达式。
(3)计算全程的时间为4.2小时,从8:
00经过4.2小时已经过了12:
00,此时离家的距离:
56×0.2=11.2(千米)
所以不能。
【点评】抓住图像中的关键点,题目中的关键词是解决图像信息题的法宝,要数形结合综合考虑。
此题涉及的基本数量关系:
运动时间、运动速度、运动路程。
难度中等
9.甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向b地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中(_______)内填上正确的数:
(2)求乙车从B地返回到C地的过程中,y与x之间
的函数关系式;
(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?
考点
:
一次函数的应用。
专题:
函数思想
10.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().
11.(7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
12.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【】
A.甲的速度是4km/hB.乙的速度是10km/h
C.乙比甲晚出发1hD.甲比乙晚到B地3h
13.(本题满分10分)张经理到老王的果园里一次性采购一种水果,他俩商定:
张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?
最大利润是多少?
14.已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
运输工具
运输费单价
元/(吨•千米)
冷藏费单价
元/(吨•时)
固定费用
元/次
汽车
2
5
200
火车
1.6
5
2280
(1)汽车的速度为 60 千米/时,火车的速度为 100 千米/时:
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),及x为何值时y汽>y火(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
考点:
一次函数的应用;折线统计图;算术平均数。
分析:
(1)根据点的坐标为:
(2,120),(2,200),直接得出两车的速度即可;
(2)根据图表得出货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象,得出关系时即可;
(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.
15.(本小题满分10分)
甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.
(1)乙车的速度为________千米/时;
(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);
(3)求出两城之间的路程,及t为何值时两车相遇;
(4)当两车相距300千米时,求t的值.
(第23题)
16.小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:
00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP(图2)的夹角记为y1,时针与OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:
请你完成:
(1)求出图3中y2与t的函数关系式;
(2)直接写出A、B两点的坐标,并解释这两点的实际意义;
(3)若小华继续观察一个小时,请你在题图3中补全图象.
17.火车匀速通过隧道时,火车在隧道内的长度
(米)与火车行驶时间
(秒)之间的关系用图象描述如图所示,有下列结论:
①火车的长度为120米;
②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;
④隧道长度为750米.
其中正确的结论是.(把你认为正确结论的序号都填上)
18.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:
方案一:
从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.
方案二:
租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:
(1)方案一中每个包装盒的价格是多少元?
(2)方案二中租赁机器的费用是多少元?
生产一个包装盒的费用是多少元?
(3)请分别求出y1、y2与x的函数关系式.
(4)如果你是决策者,你认为应该选择哪种方案更省钱?
并说明理由.
考点:
一次函数的应用。
专题:
综合题。
分析:
(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;
(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;
(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;
(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.
19.商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:
①销售成本p(元/千克)与销售月份x的关系如图所示:
②销售收入q(元/千克)与销售月份x满
足q=-
x+15;
③销售量m(千克)与销售月份x满足m=100x+20
0;
试解决以下问题:
(1)根据图形,求p与x之间的函数关系式;
(2)求该种商品每月的销售利润y(元)与销售月份x的函数关系式,
并求出哪个月的销售利润最大?
20.某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤
x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系
式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.
(参考数据:
992=9901,982=9604,972=9409,962=9216,952=9025)
考点:
二次函数的应用;一元二次方程的应用;一次函数的应用。
专题:
应用题;分类讨论。
21.张师傅驾车运送荔枝到某地出售,汽车出发前邮箱有油50升,行驶若干小时后,图中在加油站加油若干升,邮箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)汽车行驶 3 小时候加油,中途加油 31 升;
(2)求加油前邮箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问邮箱中的油是否够用?
请说明理由.
点评:
本题考查了对函数图象的理解以及由函数图象求函数关系式的问题.
22.某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的
关系如下表:
x(页)
100
200
400
1000
…
y(元)
40
80
160
400
(1)若
与
满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:
若学校先按每月付给200元的承包费,则可按每页0.15元收费。
则乙复印社每月收费
(元)与复印页数
(页)的函数关系为;
(3)在给出的坐标系内画出
(1)、
(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
23.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡
路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )
A、14分钟B、17分钟C、18分钟D、20分钟
24.某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度的函数图象如图:
(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?
(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?
工厂每天消耗电产生利润最大是多少元?
(9)一家电信公司给顾客提供两种上网收费方式:
方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x分.计费为y元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:
①图象甲描述的是方式A:
②图象乙描述的是方式B;
③当上网所用时间为500分时,选择方式B省钱.
其中,正确结论的个数是
(A)3(B)2(C)1(D)0
25.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是( )
A、小莹的速度随时间的增大而增大B、小梅的平均速度比小莹的平均速度大
C、在起跑后180秒时,两人相遇D、在起跑后50秒时,小梅在小莹的前面
26.小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。
(1)小王从B地返回A地用了多少小时?
(2)求小王出发6小时后距A地多远?
(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?
27.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:
①起跑后1小时内,甲
在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有
()
A.1个B.2个C.3个D.4个
【题型】常规题
28.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁
块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度
(厘米)与注水时间
(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线
表示________槽中水的深度与注水时间的关系,线段
表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点
的纵坐标表示的实际意义是________________________________;
(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)
29.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查结果分析显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y与x之间的关系如图所示.
(1)求y与x之间的关系式;
(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?
30.(本小题满分8分)
某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。
已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量
x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?
并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为
和
,且
到AB、BC、AD的距离与
到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?
若可行,求出圆的半径;若不可行,清说明理由.
31.早晨,小张去公园晨练,右图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是( )
A、小张去时所用的时间多于回家所用的时间B、小张在公园锻炼了20分钟
C、小张去时的速度大于回家的速度D、小张去时走上坡路,回家时走下坡路
32.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量
(件)与时间
(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间
之间的函数关系式.(2分)
(2)求乙组加工零件总量
的值.(3分)
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1
箱?
再经过多长时间恰好装满第2箱?
(5分)
33.亮亮骑自行车到距家9千米的体育馆看一场球赛,开始以正常速度匀速行驶,途中自行车出故障,他只好停下来修车.车修好后,他加速继续匀速赶往体育馆,其速度为原正常速度的
倍,结果正好按预计时间(如果自行车不出故障,以正常速度匀速行驶到达体育馆的时间)到达.亮亮行驶的路程s(千米)与时间t(分)之间的函数关系如图所示,那
么他修车占用的时间为________分.25.(本小题满分12)
为迎接2011年中国国际旅游节,某宾馆将总面积为6000平方米的房屋装修改造成普通客房(每间26平方米)和高级客房(每间36平方米)共100间及其他功能用房若干间,要求客房面积不低于总面积的50%,又不超过总面积的60%.
(1)求最多能改造成普通客房多少间.
(2)在
(1)的情况下,旅游节期间,普通客房以每间每天100元的价格全部租出,高级客房每天租出的间数y(间)与其价格x(元/间)之间的关系如图所示.试问:
该宾馆一天的最高客房收入能达到12000元吗?
若能,求出此时高级客房的价格;若不能,请说明理由.
34.小亮从家步行到公交车站台,等公交车去学校.图中的
折线表示小亮的行程s(km)与所花时间t(min)之间的函
数关系.下列说法错误的是
A.他离家8km共用了30min
B.他等公交车时间为6min
C.他步行的速度是100m/min
D.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吉林省长春汽车经济技术开发区八年级数学下册 一次函数图像应用题2新版湘教版 吉林省 长春 汽车 经济技术 开发区 八年 级数 下册 一次 函数 图像 应用题 新版 湘教版