人脸识别文献翻译中英双文.docx
- 文档编号:26597581
- 上传时间:2023-06-20
- 格式:DOCX
- 页数:12
- 大小:102.72KB
人脸识别文献翻译中英双文.docx
《人脸识别文献翻译中英双文.docx》由会员分享,可在线阅读,更多相关《人脸识别文献翻译中英双文.docx(12页珍藏版)》请在冰豆网上搜索。
人脸识别文献翻译中英双文
4Two-dimensionalFaceRecognition
4.1FeatureLocalization
Beforediscussingthemethodsofcomparingtwofacialimageswenowtakeabrieflookatsomeatthepreliminaryprocessesoffacialfeaturealignment.Thisprocesstypicallyconsistsoftwostages:
facedetectionandeyelocalization.Dependingontheapplication,ifthepositionofthefacewithintheimageisknownbeforehand(foracooperativesubjectinadooraccesssystemforexample)thenthefacedetectionstagecanoftenbeskipped,astheregionofinterestisalreadyknown.Therefore,wediscusseyelocalizationhere,withabriefdiscussionoffacedetectionintheliteraturereview.
Theeyelocalizationmethodisusedtoalignthe2Dfaceimagesofthevarioustestsetsusedthroughoutthissection.However,toensurethatallresultspresentedarerepresentativeofthefacerecognitionaccuracyandnotaproductoftheperformanceoftheeyelocalizationroutine,allimagealignmentsaremanuallycheckedandanyerrorscorrected,priortotestingandevaluation.
Wedetectthepositionoftheeyeswithinanimageusingasimpletemplatebasedmethod.Atrainingsetofmanuallypre-alignedimagesoffacesistaken,andeachimagecroppedtoanareaaroundbotheyes.Theaverageimageiscalculatedandusedasatemplate.
Figure4-1Theaverageeyes.Usedasatemplateforeyedetection.
Botheyesareincludedinasingletemplate,ratherthanindividuallysearchingforeacheyeinturn,asthecharacteristicsymmetryoftheeyeseithersideofthenose,provideausefulfeaturethathelpsdistinguishbetweentheeyesandotherfalsepositivesthatmaybepickedupinthebackground.Althoughthismethodishighlysusceptibletoscale(i.e.subjectdistancefromthecamera)andalsointroducestheassumptionthateyesintheimageappearnearhorizontal.Somepreliminaryexperimentationalsorevealsthatitisadvantageoustoincludetheareaofskinjustbeneaththeeyes.Thereasonbeingthatinsomecasestheeyebrowscancloselymatchthetemplate,particularlyifthereareshadowsintheeye-sockets,buttheareaofskinbelowtheeyeshelpstodistinguishtheeyesfromeyebrows(theareajustbelowtheeyebrowscontaineyes,whereastheareabelowtheeyescontainsonlyplainskin).
Awindowispassedoverthetestimagesandtheabsolutedifferencetakentothatoftheaverageeyeimageshownabove.Theareaoftheimagewiththelowestdifferenceistakenastheregionofinterestcontainingtheeyes.Applyingthesameprocedureusingasmallertemplateoftheindividualleftandrighteyesthenrefineseacheyeposition.
Thisbasictemplate-basedmethodofeyelocalization,althoughprovidingfairlypreciselocalizations,oftenfailstolocatetheeyescompletely.However,weareabletoimproveperformancebyincludingaweightingscheme.
Eyelocalizationisperformedonthesetoftrainingimages,whichisthenseparatedintotwosets:
thoseinwhicheyedetectionwassuccessful;andthoseinwhicheyedetectionfailed.Takingthesetofsuccessfullocalizationswecomputetheaveragedistancefromtheeyetemplate(Figure4-2top).Notethattheimageisquitedark,indicatingthatthedetectedeyescorrelatecloselytotheeyetemplate,aswewouldexpect.However,brightpointsdooccurnearthewhitesoftheeye,suggestingthatthisareaisofteninconsistent,varyinggreatlyfromtheaverageeyetemplate.
Figure4-2–Distancetotheeyetemplateforsuccessfuldetections(top)indicatingvarianceduetonoiseandfaileddetections(bottom)showingcrediblevarianceduetomiss-detectedfeatures.
Inthelowerimage(Figure4-2bottom),wehavetakenthesetoffailedlocalizations(imagesoftheforehead,nose,cheeks,backgroundetc.falselydetectedbythelocalizationroutine)andonceagaincomputedtheaveragedistancefromtheeyetemplate.Thebrightpupilssurroundedbydarkerareasindicatethatafailedmatchisoftenduetothehighcorrelationofthenoseandcheekboneregionsoverwhelmingthepoorlycorrelatedpupils.Wantingtoemphasizethedifferenceofthepupilregionsforthesefailedmatchesandminimizethevarianceofthewhitesoftheeyesforsuccessfulmatches,wedividethelowerimagevaluesbytheupperimagetoproduceaweightsvectorasshowninFigure4-3.Whenappliedtothedifferenceimagebeforesummingatotalerror,thisweightingschemeprovidesamuchimproveddetectionrate.
Figure4-3-Eyetemplateweightsusedtogivehigherprioritytothosepixelsthatbestrepresenttheeyes.
4.2TheDirectCorrelationApproach
Webeginourinvestigationintofacerecognitionwithperhapsthesimplestapproach,knownasthedirectcorrelationmethod(alsoreferredtoastemplatematchingbyBrunelliandPoggio)involvingthedirectcomparisonofpixelintensityvaluestakenfromfacialimages.Weusetheterm‘DirectCorrelation’toencompassalltechniquesinwhichfaceimagesarecompareddirectly,withoutanyformofimagespaceanalysis,weightingschemesorfeatureextraction,regardlessofthedistancemetricused.Therefore,wedonotinferthatPearson’scorrelationisappliedasthesimilarityfunction(althoughsuchanapproachwouldobviouslycomeunderourdefinitionofdirectcorrelation).WetypicallyusetheEuclideandistanceasourmetricintheseinvestigations(inverselyrelatedtoPearson’scorrelationandcanbeconsideredasascaleandtranslationsensitiveformofimagecorrelation),asthispersistswiththecontrastmadebetweenimagespaceandsubspaceapproachesinlatersections.
Firstly,allfacialimagesmustbealignedsuchthattheeyecentersarelocatedattwospecifiedpixelcoordinatesandtheimagecroppedtoremoveanybackgroundinformation.Theseimagesarestoredasgrayscalebitmapsof65by82pixelsandpriortorecognitionconvertedintoavectorof5330elements(eachelementcontainingthecorrespondingpixelintensityvalue).Eachcorrespondingvectorcanbethoughtofasdescribingapointwithina5330dimensionalimagespace.Thissimpleprinciplecaneasilybeextendedtomuchlargerimages:
a256by256pixelimageoccupiesasinglepointin65,536-dimensionalimagespaceandagain,similarimagesoccupyclosepointswithinthatspace.Likewise,similarfacesarelocatedclosetogetherwithintheimagespace,whiledissimilarfacesarespacedfarapart.CalculatingtheEuclideandistanced,betweentwofacialimagevectors(oftenreferredtoasthequeryimageq,andgalleryimageg),wegetanindicationofsimilarity.Athresholdisthenappliedtomakethefinalverificationdecision.
VerificationTests
Theprimaryconcerninanyfacerecognitionsystemisitsabilitytocorrectlyverifyaclaimedidentityordetermineaperson'smostlikelyidentityfromasetofpotentialmatchesinadatabase.Inordertoassessagivensystem’sabilitytoperformthesetasks,avarietyofevaluationmethodologieshavearisen.Someoftheseanalysismethodssimulateaspecificmodeofoperation(i.e.securesiteaccessorsurveillance),whileothersprovideamoremathematicaldescriptionofdatadistributioninsomeclassificationspace.Inaddition,theresultsgeneratedfromeachanalysismethodmaybepresentedinavarietyofformats.Throughouttheexperimentationsinthisthesis,weprimarilyusetheverificationtestasourmethodofanalysisandcomparison,althoughwealsouseFisher’sLinearDiscriminatetoanalyzeindividualsubspacecomponentsinsection7andtheidentificationtestforthefinalevaluationsdescribedinsection8.Theverificationtestmeasuresasystem’sabilitytocorrectlyacceptorrejecttheproposedidentityofanindividual.Atafunctionallevel,thisreducestotwoimagesbeingpresentedforcomparison,forwhichthesystemmustreturneitheranacceptance(thetwoimagesareofthesameperson)orrejection(thetwoimagesareofdifferentpeople).Thetestisdesignedtosimulatetheapplicationareaofsecuresiteaccess.Inthisscenario,asubjectwillpresentsomeformofidentificationatapointofentry,perhapsasaswipecard,proximitychiporPINnumber.Thisnumberisthenusedtoretrieveastoredimagefromadatabaseofknownsubjects(oftenreferredtoasthetargetorgalleryimage)andcomparedwithaliveimagecapturedatthepointofentry(thequeryimage).Accessisthengranteddependingontheacceptance/rejectiondecision.
Theresultsofthetestarecalculatedaccordingtohowmanytimestheaccept/rejectdecisionismadecorrectly.Inordertoexecutethistestwemustfirstdefineourtestsetoffaceimages.Althoughthenumberofimagesinthetestsetdoesnotaffecttheresultsproduced(astheerrorratesarespecifiedaspercentagesofimagecomparisons),itisimportanttoensurethatthetestsetissufficientlylargesuchthatstatisticalanomaliesbecomeinsignificant(forexample,acoupleofbadlyalignedimagesmatchingwell).Also,thetypeofimages(highvariationinlighting,partialocclusionsetc.)willsignificantlyaltertheresultsofthetest.Therefore,inordertocomparemultiplefacerecognitionsystems,theymustbeappliedtothesametestset.
However,itshouldalsobenotedthatiftheresultsaretoberepresentativeofsystemperformanceinarealworldsituation,thenthetestdatashouldbecapturedunderpreciselythesamecircumstancesasintheapplicationenvironment.Ontheotherhand,ifthepurposeoftheexperimentationistoevaluateandimproveamethodoffacerecognition,whichmaybeappliedtoarangeofapplicationenvironments,thenthetestdatashouldpresenttherangeofdifficultiesthataretobeovercome.Thismaymeanincludingagreaterpercentageof‘difficult’imagesthanwouldbeexpectedintheperceivedoperatingconditionsandhencehighererrorratesintheresultsprodu
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 识别 文献 翻译 中英双文