小学数学知识点集锦打印版.docx
- 文档编号:26432273
- 上传时间:2023-06-19
- 格式:DOCX
- 页数:13
- 大小:22.81KB
小学数学知识点集锦打印版.docx
《小学数学知识点集锦打印版.docx》由会员分享,可在线阅读,更多相关《小学数学知识点集锦打印版.docx(13页珍藏版)》请在冰豆网上搜索。
小学数学知识点集锦打印版
小学数学知识点集锦(打印版)
第一部分:
概念
(一)整数
1、自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
2、一个物体也没有,用0表示。
0也是自然数。
3、计数单位:
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
数位:
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
4、
数级
...
亿级
万级
个级
数位
...
千亿位
百亿位
十亿位
亿位
千万位
百万位
十万位
万位
千位
百位
十位
个位
计数单位
...
千亿
百亿
十亿
亿
千万
百万
十万
万
千
百
十
个
5、数的整除:
整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
6、如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
7、一个数的因数的个数是有限的,其中最小的因数是1,最大因数是它本身。
例如:
10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:
3、6、9、12……其中最小的倍数是3,没有最大的倍数。
9、2的倍数特征:
个位上是0、2、4、6、8的数,都能被2整除,例如:
202、480、304,都能被2整除。
10、5的倍数特征:
个位上是0或5的数,都能被5整除,例如:
5、30、405都能被5整除。
11、3的倍数特征:
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:
15、108、204都能被3整除。
12、能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2整除的特征可分为奇数和偶数。
13、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:
2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
15、1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
16、每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
17、几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。
18、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
19、如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
如果两个数是互质数,它们的最大公因数就是1。
20、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:
2的倍数有2、4、6、8、10、12、14、16、18……,3的倍数有3、6、9、12、15、18……,其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
16、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
17、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
18、把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
19、求几个数的最大公因数的方法是:
先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。
20、求几个数的最小公倍数的方法是:
先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
(二)小数
1、小数的意义:
把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
2、一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
3、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
4、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
5、小数按照小数的整数部分的大小分为纯小数和带小数两部分;按照小数的小数部分的情况分为有限小数和无限小数两部分。
6、纯小数:
整数部分是零的小数,叫做纯小数。
例如:
0.25、0.368都是纯小数。
带小数:
整数部分不是零的小数,叫做带小数。
例如:
3.25、5.26都是带小数。
7、有限小数:
小数部分的数位是有限的小数,叫做有限小数。
例如:
41.7、25.3、0.23都是有限小数。
无限小数:
小数部分的数位是无限的小数,叫做无限小数。
如:
4.33……,3.1415926……
8、无限小数分为无限循环小数和无限不循环小数。
无限不循环小数:
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:
∏(即圆周率3.1415926……)
循环小数:
一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:
3.555……0.0333……12.109109……
9、一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:
3.99……的循环节是“9”,0.5454……的循环节是“54”。
纯循环小数:
循环节从小数部分第一位开始的,叫做纯循环小数。
例如:
3.111……0.5656……
混循环小数:
循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222……0.03333……
10、写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
(三)分数
1、把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
2、在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
3、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
4、分数的基本性质:
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
5、真分数:
分子比分母小的分数叫做真分数。
真分数小于1。
6、假分数:
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
7、带分数:
整数与真分数合成的数,通常叫做带分数。
8、把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
9、分子分母是互质数的分数,叫做最简分数。
10、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
11、分数大小的比较:
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分,然后再比较;若分子相同,分母大的反而小。
12、分数的加减法则:
同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、一个数除以分数,等于这个数乘以分数的倒数。
17、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
18、表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用百分号"%"来表示。
百分号是表示百分数的符号。
19、两个数相除就叫做两个数的比。
如:
2÷5=2:
5或2/5.
20、比的基本性质:
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
21、表示两个比相等的式子叫做比例。
如3:
6=9:
18
22、比例的基本性质:
在比例里,两外项之积等于两内项之积。
23、解比例:
求比例中的未知项,叫做解比例。
如3:
χ=9:
18
24、正比例:
两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:
y/x=k(k一定)或kx=y
25、反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:
x×y=k(k一定)或k/x=y
26、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
27、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
28、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
29、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
30、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:
利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
(四)数的读法和写法
1.整数的读法:
从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2.整数的写法:
从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3.小数的读法:
读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4.小数的写法:
写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5.分数的读法:
读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6.分数的写法:
先写分数线,再写分母,最后写分子,按照整数的写法来写。
7.百分数的读法:
读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8.百分数的写法:
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(五)数的改写与比较
1、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
2、准确数:
在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
3、近似数:
根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:
1302490015省略亿后面的尾数是13亿。
4、四舍五入法:
要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:
省略345900万后面的尾数约是35万。
省略4725097420亿后面的尾数约是47亿。
5、比较整数大小:
比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
6、比较小数的大小:
先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
7、比较分数的大小:
分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(六)数的互化
1.小数化成分数:
原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2.分数化成小数:
用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
4.小数化成百分数:
只要把小数点向右移动两位,同时在后面添上百分号。
5.百分数化成小数:
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6.分数化成百分数:
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7.百分数化成小数:
先把百分数改写成分数,能约分的要约成最简分数。
(七)运算定律
1、加法交换律:
两数相加,交换加数的位置,和不变。
2、加法结合律:
三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:
两数相乘,交换因数的位置,积不变。
4、乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:
(2+4)×5=2×5+4×5
6、商不变性质:
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:
被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
(八)字母表示数
1、等号左边的数值与等号右边的数值相等的式子叫做等式。
2、等式的基本性质:
等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程?
含有未知数的等式叫方程。
第二部分:
几何体
1.正方形:
正方形的周长=边长×4公式:
C=4a
正方形的面积=边长×边长公式:
S=a×a
正方体的体积=边长×边长×边长公式:
V=a×a×a
2.长方形的周长=(长+宽)×2公式:
C=(a+b)×2
长方形的面积=长×宽公式:
S=a×b
长方体的体积=长×宽×高公式:
V=a×b×h
3.三角形的面积=底×高÷2。
公式:
S=a×h÷2
4.平行四边形的面积=底×高公式:
S=a×h
5.梯形的面积=(上底+下底)×高÷2公式:
S=(a+b)h÷2
6.圆:
直径=半径×2公式:
d=2r
半径=直径÷2公式:
r=d÷2
圆的周长=圆周率×直径公式:
c=πd=2πr
圆的面积=半径×半径×π公式:
S=πrr
7.圆柱的侧面积=底面的周长×高。
公式:
S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两个底面的面积。
公式:
S=ch+2s=ch+2πr2
圆柱的体积=底面积×高。
公式:
V=Sh
8.圆锥:
圆锥的总体积=底面积×高×1/3公式:
V=1/3Sh
9、三角形内角和=180度。
10、平行线:
同一平面内不相交的两条直线叫做平行线
11、垂直:
两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
12、直线:
可以向两端无限延伸;没有端点。
读作:
直线AB或直线BA。
线段:
不能向两端无限延伸;有两个端点。
读作:
线段AB或线段BA。
射线:
可以向一端无限延伸;有一个端点。
读作:
射线AB(只有一种读法,从端点读起。
)
第三部分:
计算公式
数量关系式:
1、每份数×份数=总数总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
有余数的除法:
被除数=商×除数+余数
和差问题的公式(和+差)÷2=大数(和-差)÷2=小数
和倍问题:
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
差倍问题:
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
植树问题:
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1,全长=株距×(株数-1),株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距,全长=株距×株数,株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1,全长=株距×(株数+1),株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距,全长=株距×株数,株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题:
相遇路程=速度和×相遇时间,相遇时间=相遇路程÷速度和,
速度和=相遇路程÷相遇时间
追及问题:
追及距离=速度差×追及时间,追及时间=追及距离÷速度差,
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度、面积、体积单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1公顷=10000平方米1亩=666.666平方米
(5)1升=1立方分米=1000毫升1毫升=1立方厘米
重量换算:
1吨=1000千克,1千克=1000克,1千克=1公斤,1公斤=2市斤,1市斤=500克
时间单位换算:
1世纪=100年,1年=12月,大月(31天),有:
1\3\5\7\8\10\12月
小月(30天)的有:
4\6\9\11月,平年2月是28天,闰年2月是29天
平年全年365天,闰年全年366天,1日=24小时1时=60分,1分=60秒,1时=3600秒
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 知识点 集锦 打印