一元一次方程知识点及经典例题.docx
- 文档编号:26396471
- 上传时间:2023-06-18
- 格式:DOCX
- 页数:54
- 大小:161.89KB
一元一次方程知识点及经典例题.docx
《一元一次方程知识点及经典例题.docx》由会员分享,可在线阅读,更多相关《一元一次方程知识点及经典例题.docx(54页珍藏版)》请在冰豆网上搜索。
一元一次方程知识点及经典例题
一、知识要点梳理
知识点一:
方程和方程的解
1.方程:
含有_____________的______叫方程
注意:
a.必须是等式b.必须含有未知数。
易错点:
(1).方程式等式,但等式不一定是方程;
(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:
判断是不是方程:
例:
下列式子:
(1).8-7=1+0
(2).
1、一元一次方程:
一元一次方程的标准形式是:
ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:
一元一次方程须满足下列三个条件:
(1)只含有一个未知数;
(2)未知数的次数是1次;
(3)整式方程.
2、方程的解:
判断一个数是否是某方程的解:
将其代入方程两边,看两边是否相等.
知识点二:
一元一次方程的解法
1、方程的同解原理(也叫等式的基本性质)
等式的性质1:
等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么
要点诠释:
分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:
(其中m≠0)
特别须注意:
分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)
化为整数,如方程:
-
=1.6,将其化为:
-
=1.6。
方程的
右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:
解一元一次方程的一般步骤
变形
具体方法
变形根据
注意事项
步骤
去分
方程两边都乘以
1.不能漏乘不含分母的项;
各个分母的最小公倍
等式性质2
2.分数线起到括号作用,去掉分母
母
数
后,如果分子是多项式,则要加括号
1
去括
先去小括号,再去
乘法分配律、
1.分配律应满足分配到每一项
号
中括号,最后去大括号
去括号法则
2.注意符号,特别是去掉括号
把含有未知数的
1.移项要变号;
移
项移到方程的一边,不
等式性质1
2.一般把含有未知数的项移到方程
项
含有未知数的项移到
左边,其余项移到右边
另一边
合并
把方程中的同类项
同
分别合并,化成
合并同类项
合并同类项时,把同类项的系数
类
“ax
b”的形式
法则
相加,字母与字母的指数不变
项
(a
0)
未知
方程两边同除以
数的
未知数的系数
a,得
系数
等式性质2
分子、分母不能颠倒
b
化成
x
“1”
a
要点诠释:
理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:
①a≠0时,方程有唯一解;
②a=0,b=0时,方程有无数个解;
③a=0,b≠0时,方程无解。
牛刀小试
例1、解方程
(1)y-y1
2
y2
2
5
例2、由两个方程的解相同求方程中子母的值
已知方程x104x的解与方程5x2m2的解相同,求m的值.
例3、解方程知识与绝对值知识综合题型
解方程:
|2x1|
7
3
2
二、经典例题透析
类型一:
一元一次方程的相关概念
1、已知下列各式:
①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦
=8;⑧x=0。
其中方程的个数是()
A、5B、6C、7D、8
举一反三:
[变式1]判断下列方程是否是一元一次方程:
(1)-2x2+3=x
(2)3x-1=2y(3)x+=2(4)2x2-1=1-2(2x-x2)
[变式2]已知:
(a-3)(2a+5)x+(a-3)y+6=0是一元一次方程,求a的值。
[变式3](2011重庆江津)已知3是关于x的方程2x-a=1的解,则a的值是()
A.-5B.5C.7D.2
类型二:
一元一次方程的解法
解一元一次方程的一般步骤是:
去分母、去括号、移项、合并同类项、系数化为1。
如
果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。
1.巧凑整数解方程:
2、
举一反三:
[变式]解方程:
=2x-5
2..巧去括号解方程:
4、
举一反三:
[变式]解方程:
3
4.运用拆项法解方程:
5、
5.巧去分母解方程:
6、
举一反三:
[变式](2011山东滨州)依据下列解方程的过程,请在前面的括号
内填写变形步骤,在后面的括号内填写变形依据。
解:
原方程可变形为(__________________________)
去分母,得3(3x+5)=2(2x-1).(__________________________)
去括号,得9x+15=4x-2.(____________________________)
(____________________),得9x-4x=-15-2.(____________________________)
合并,得5x=-17.(合并同类项)
(____________________),得x=.(_________________________)
6.巧组合解方程:
7、
思路点拨:
按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第
一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。
7.巧解含有绝对值的方程:
8、|x-2|-3=0
思路点拨:
解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一
次方程。
对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两
个一元一次方程分别解之,即若|x|=m,则x=m或x=-m;也可以根据绝对值的几何意义
进行去括号,如解法二。
举一反三:
【变式1】(2011福建泉州)已知方程,那么方程的解是________.
4
;
[变式2]5|x|-16=3|x|-4
[变式3]
8.利用整体思想解方程:
9、
思路点拨:
因为含有的项均在“”中,所以我们可以将作为一个整体,
先求出整体的值,进而再求的值。
参考答案
例1:
解:
是方程的是①④⑤⑥⑦⑧,共六个,所以选B
总结升华:
根据定义逐个进行判断是解题的基本方法,判断时应注意两点:
一是等式;二是含有未知数,体现了对概念的理解与应用能力。
举一反三
1.解析:
判断是否为一元一次方程需要对原方程进行化简后再作判断。
答案:
(1)
(2)(3)不是,(4)是
2.解析:
分两种情况:
(1)只含字母y,则有(a-3)(2a+5)=0且a-3≠0
(2)只含字母x,则有a-3=0且(a-3)(2a+5)≠0不可能
综上,a的值为。
3.答案:
B
例2.解:
移项,得。
合并同类项,得2x=-1。
系数化为1,得x=-。
举一反三
解:
原方程可变形为
=2x-5
整理,得8x+18-(2+15x)=2x-5,
去括号,得8x+18-2-15x=2x-5
5
移项,得8x-15x-2x=-5-18+2
合并同类项,得-9x=-21
系数化为1,得x=。
例4解:
去括号,得
去小括号,得
去分母,得(3x-5)-8=8
去括号、移项、合并同类项,得3x=21
两边同除以3,得x=7
∴原方程的解为x=7
举一反三
解:
依次移项、去分母、去大括号,得
依次移项、去分母、去中括号,得
依次移项、去分母、去小括号,得
,∴x=48
例5解:
原方程逆用分数加减法法则,得
移项、合并同类项,得。
系数化为1,得。
例6解:
原方程化为
去分母,得100x-(13-20x)=7
去括号、移项、合并同类项,得120x=20
两边同除以120,得x=
6
∴原方程的解为
总结升华:
应用分数性质时要和等式性质相区别。
可以化为同分母的,先化为同分母,再去分母较简便。
举一反三
【答案】解:
原方程可变形为(_分式的基本性质_)
去分母,得3(3x+5)=2(2x-1).(_等式性质2_)
去括号,得9x+15=4x-2.(去括号法则或乘法分配律_)
(______移项_______),得9x-4x=-15-2.(等式性质1_)
合并,得5x=-17.(合并同类项)
(_______系数化为1____),得x=.(等式性质2)
例7解:
移项通分,得
化简,得
去分母,得8x-144=9x-99。
移项、合并,得x=-45。
例8解法一:
移项,得|x-2|=3
当x-2≥0时,原方程可化为x-2=3,解得x=5
当x-2<0时,原方程可化为-(x-2)=3,解得x=-1。
所以方程|x-2|-3=0的解有两个:
x=5或x=-1。
解法二:
移项,得|x-2|=3。
因为绝对值等于3的数有两个:
3和-3,所以x-2=3或x-2=-3。
分别解这两个一元一次方程,得解为x=5或x=-1。
举一反三
1.
【答案】
2.
解:
5|x|-3|x|=16-4
2|x|=12
|x|=6
=±6
x
3.
解:
|3x-1|=8
3x-1=±8
3x=1±8
3x=9或3x=-7
x=3或
7
例9解:
移项通分,得:
化简,得:
移项,系数化1得:
总结升华:
解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
三、课堂练习
一、选择题
3
;
(2)0.3x=1;(3)
x
2
其中
1、已知下列方程:
(1)x-2=
=5x-1;(4)x
-4x=3;(5)x=0;(6)x+2y=0.
x
2
一元一次方程的个数是(
)
A2
B3
C
4
D5
2、下列四组变形中,正确的是()
A由5x+7=0,得5x=-7B由2x-3=0,得2x-3+3=0
x
1
D由5x=7,得x=35
C由=2,得x=
3
6
3、一个水池有甲、乙两个水龙头,单独开甲水龙头
2小时可把空池灌满;单独开乙水龙头
3小时可把空池灌满,若同时开放两个水龙头,灌满空池需(
)
A
6小时
B5
小时
C2小时
D3小时
5
6
4、下列方程中,是由方程
7x-8=x+3
变形而得到的是(
)
A
7x=x+5
B
7x+5=x
C
6x=11
D
-8+3=-6x
5、下列方程的变形中,是移项的是()
55
A由3=x,得x=3B由6x=3+5x,得6x=5x+3
22
8
⑤x
6;⑥x
2y
0.其中一元一次方程的个数是
(
).
A.2
B.3
C.4
D.5
13已知关于
x
的方程
ax
5(2a
1)x
的解是x
1,则
a
的值是
(
).
、
A.-5
B.-6
C.-7
D.8
14、方程
3x5
2x
移项后,正确的是
(
).
1
A.3x
2x
5
1
B.3x
2x
1
5
C.3x
2x
1
5
D.3x
2x
1
5
15、
2x
4
3
x1
,去分母得
(
).
方程2
3
2
A.2
2(2x
4)
3
3(x
1)
B.12
3(2x
4)
18
3(x
1)
C.12
(2x
4)
18
(x
1)
D.62(2x
4)
9(x1)
16、甲、乙两人骑自行车同时从相距
65km的两地相向而行,2小时相遇,若甲
比乙每小时多骑
2.5km,则乙的时速是
(
).
A.12.5km
B.15km
C.17.5km
D.20km
17、某商店卖出两件衣服,每件60元,其中一件赚
25%,另一件赔
25%,那么
这两件衣服售出后商店是
(
).
A.不赚不赔
B.赚8元
C.亏8元
D.赚15元
二、填空题:
1、圆的周长为4,半径为x,列出方程为。
2、已知方程(m-2)x
m1
.
+5=9是关于x的一元一次方程,则m=
3、已知代数式x+2y的值是3,则代数式2x+4y+1的值是。
4、3a2m3b4与2a6mb4是同类项,则m=.
5、若xy+(y+1)2=0,则x-y=.
6、某商品的进价为250元,为了减少库存,决定每件商品按标价打8折销售,结果每件商
品仍获利10元,那么原来标价为。
7、当x=时,82x的值是0.
15
9
10
三、一元一次方程应用题(找出等量关系)
一、列一元一次方程解应用题的一般步骤
(1)审题:
弄清题意.
(2)找出等量关系:
找出能够表示本题含义的相等关系.(3)设
出未知数,列出方程:
设出未知数后,表示出有关的含字母的式子,?
然后利用已找出的等
量关系列出方程.(4)解方程:
解所列的方程,求出未知数的值.(5)检验,写答案:
检验
所求出的未知数的值是否是方程的解,?
是否符合实际,检验后写出答案.
1、数字问题
要搞清楚数的表示方法:
一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:
100a+10b+c。
例1、若三个连续的偶数和为18,求这三个数。
例2、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上
的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:
原
两位数+36=对调后新两位数
例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位
与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
分析:
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
2、日历中的规律:
横行相邻两数相差____竖行相邻两数相差___。
例1、如果今天是星期三,那么一年(365天)以后的今天是星期___________
例2、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被
___________整除。
A3B4C5D6
例3、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?
11
3、等积变形问题
常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。
例1、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?
例2.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为
125125mm2内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少
mm?
(结果保留整数
314.)
4、和、差、倍、分问题:
倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,
增长率⋯⋯”来体现。
多少关系:
通过关键词语“多、少、和、差、不足、剩余⋯⋯”来体现。
(1)劳力调配问题:
这类问题要搞清人数的变化.
例1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
例2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(2)配套问题:
例1、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)
12
例2.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:
列表法。
每人每天
人数
数量
大齿轮
16个
x人
16x
小齿轮
10个
85x
人
1085x
等量关系:
小齿轮数量的
2倍=大齿轮数量的
3倍
解:
设分别安排x名、85x名工人加工大、小齿轮
3(16x)2[10(85x)]
48x170020x
68x1700
x25
85x60人
答:
略.
(3)分配问题:
例1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
例2.三个正整数的比为1:
2:
4,它们的和是84,那么这三个数中最大的数是几?
(比例分配问题常用等量关系:
各部分之和=总量。
)
(4)年龄问题:
例1、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少岁?
例2、小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄。
13
5、工程问题
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。
例1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作
3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:
甲完成工作量+乙完成工作量=工作总量。
11
解:
设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(15+12)
x
×3+12=1,
...................
例2、在西部大开发中,基础建设优先发展,甲、乙两队共同承包了一段长
6500
米的高速公路工程,两队分别从两端施工相向前进,甲队平均每天可完成
480
米,乙队平均每天比甲队多完成220米,乙队比甲队晚一天开工,乙队开工几天后两队完成全部任务?
6、①打折销售问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)基本关系式:
①利润=售价—进价;②售价=标价×折数;③利润率=利润/进价。
由①②可得出④利润=标价×折数-进价。
由③④可得出⑤利润率
=。
②市场经济问题
商品利润
(1)商品利润=商品售价-商品成本价
(2)商品利润率=×100%商品成本价
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,
14
即按原标价的80%出售.
例1、一件衣服标价是200元,现打7折销售。
问:
买这件衣服需要多少钱?
若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?
利润是多少?
例2、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
7、行程问题。
(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注
意两者运动时出发的时间和地点)
要掌握行程中的基本关系:
路程=速度×时间。
①相遇问题(相向而行),这类问题的相等关系是:
甲走的路程+乙走的路程=
全路程
②追及问题(同向而行),这类问题的等量关系是:
同时不同地:
甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况
下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,
一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
15
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600
公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程 知识点 经典 例题