中考真题北京市中考数学试题解析版.docx
- 文档编号:26375539
- 上传时间:2023-06-18
- 格式:DOCX
- 页数:27
- 大小:365.02KB
中考真题北京市中考数学试题解析版.docx
《中考真题北京市中考数学试题解析版.docx》由会员分享,可在线阅读,更多相关《中考真题北京市中考数学试题解析版.docx(27页珍藏版)》请在冰豆网上搜索。
中考真题北京市中考数学试题解析版
2016年北京市中考真题
一、选择题(本题共30分,每小题3分)
1.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )
A.45°B.55°C.125°D.135°
2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103B.28×103C.2.8×104D.0.28×105
3.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2B.a<﹣3C.a>﹣bD.a<﹣b
4.(3分)内角和为540°的多边形是( )
A.
B.
C.
D.
5.(3分)如图是某个几何体的三视图,该几何体是( )
A.圆锥B.三棱锥C.圆柱D.三棱柱
6.(3分)如果a+b=2,那么代数(a﹣
)•
的值是( )
A.2B.﹣2C.
D.﹣
7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A.
B.
C.
D.
8.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )
A.3月份B.4月份C.5月份D.6月份
9.(3分)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为( )
A.O1B.O2C.O3D.O4
10.(3分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:
m3),绘制了统计图.如图所示,下面四个推断合理的是( )
①年用水量不超过180m3的该市居民家庭按第一档水价交费;
②年用水量超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150﹣180之间;
④该市居民家庭年用水量的平均数不超过180.
A.①③B.①④C.②③D.②④
二、填空题(本题共18分,每小题3分)
11.(3分)如果分式
有意义,那么x的取值范围是 .
12.(3分)如图中的四边形均为矩形,根据图形,写出一个正确的等式 .
13.(3分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:
移植的棵数n
1000
1500
2500
4000
8000
15000
20000
30000
成活的棵数m
865
1356
2220
3500
7056
13170
17580
26430
成活的频率
0.865
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为 .
14.(3分)如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.
15.(3分)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:
中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为 .
16.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:
直线l和l外一点P.(如图1)
求作:
直线l的垂线,使它经过点P.
作法:
如图2
(1)在直线l上任取两点A,B;
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:
该作图的依据是 .
三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程.
17.(5分)计算:
(3﹣π)0+4sin45°﹣
+|1﹣
|.
18.(5分)解不等式组:
.
19.(5分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:
DA=DE.
20.(5分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
21.(5分)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:
y=2x相交于点B(m,4).
(1)求直线l1的表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.
22.(5分)调查作业:
了解你所在小区家庭5月份用气量情况:
小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.
小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.
表1抽样调查小区4户家庭5月份用气量统计表(单位:
m3)
家庭人数
2
3
4
5
用气量
14
19
21
26
表2抽样调查小区15户家庭5月份用气量统计表(单位:
m3)
家庭人数
2
2
2
3
3
3
3
3
3
3
3
3
3
3
4
用气量
10
11
15
13
14
15
15
17
17
18
18
18
18
20
22
表3抽样调查小区15户家庭5月份用气量统计表(单位:
m3)
家庭人数
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
用气量
10
12
13
14
17
17
18
19
20
20
22
26
31
28
31
根据以上材料回答问题:
小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.
23.(5分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:
BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
24.(5分)阅读下列材料:
北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.
2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.
根据以上材料解答下列问题:
(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;
(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约 亿元,你的预估理由 .
25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交
于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:
AC∥DE;
(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.
26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:
x
…
1
2
3
5
7
9
…
y
…
1.98
3.95
2.63
1.58
1.13
0.88
…
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为 ;
②该函数的一条性质:
.
27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.
(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
28.(7分)在等边△ABC中,
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:
在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:
要证明PA=PM,只需证△APM是等边三角形;
想法2:
在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:
将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.
(1)已知点A的坐标为(1,0),
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为
,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
参考答案
一、选择题(本题共30分,每小题3分)
1.B
【解析】由图形所示,∠AOB的度数为55°,
故选B.
2.C
【解析】28000=1.1×104.
故选C.
3.D
【解析】A、如图所示:
﹣3<a<﹣2,故此选项错误;
B、如图所示:
﹣3<a<﹣2,故此选项错误;
C、如图所示:
1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;
D、由选项C可得,此选项正确.
故选D.
4.C
【解析】设多边形的边数是n,则
(n﹣2)•180°=540°,
解得n=5.
故选C.
5.D
【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.
6.A
【解析】∵a+b=2,
∴原式=
•
=a+b=2
故选A.
7.D
【解析】A、是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项正确.
故选D.
8.B
【解析】由图象中的信息可知,3月份的利润=7.5﹣5=2.5元,
4月份的利润=6﹣3=3元,
5月份的利润=4.5﹣2=2.5元,
6月份的利润=3﹣1.2=1.8元,
故出售该种水果每斤利润最大的月份是4月份,
故选B.
9.A
【解析】设过A、B的直线解析式为y=kx+b,
∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),
∴
,
解得
,
∴直线AB为y=﹣x﹣2,
∴直线AB经过第二、三、四象限,
如图,由A、B的坐标可知,沿CD方向为x轴正方向,沿CE方向为y轴正方向,
故将点A沿着CD方向平移4个单位,再沿着EC方向平移2个单位,即可到达原点位置,则原点为点O1.
故选:
A.
10.B
【解析】①由条形统计图可得:
年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;
②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),
∴
×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价交费,故此选项错误;
③∵5万个数数据的中间是第25000和25001的平均数,
∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误;
④由①得,该市居民家庭年用水量的平均数不超过180,正确,
故选:
B.
二、填空题(本题共18分,每小题3分)
11.x≠1
【解析】由题意,得
x﹣1≠0,
解得x≠1,
故答案为x≠1.
12.am+bm+cm=m(a+b+c)
【解析】由题意可得:
am+bm+cm=m(a+b+c).
故答案为am+bm+cm=m(a+b+c).
13.0.881
【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率
∴这种幼树移植成活率的概率约为0.881.
故答案为0.881;
14.3
【解析】如图,∵CD∥AB∥MN,
∴△ABE∽△CDE,△ABF∽△MNF,
∴
,
,
即
,
,
解得:
AB=3m,
答:
路灯的高为3m.
15.505
【解析】1~100的总和为:
=5050,
一共有10行,且每行10个数之和均相等,所以每行10个数之和为:
5050÷10=505,
故答案为505.
16.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)
【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),
理由:
如图,∵PA=AQ,PB=QB,
∴点A、点B在线段PQ的垂直平分线上,
∴直线AB垂直平分线段PQ,
∴PQ⊥AB.
三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程
17.解:
(3﹣π)0+4sin45°﹣
+|1﹣
|
=1+4×
﹣2
﹣1
=1
﹣2
+
﹣1
=
18.解:
解不等式2x+5>3(x﹣1),得:
x<8,
解不等式4x>
,得:
x>1,
∴不等式组的解集为:
1<x<8.
19.证明:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠E=∠BAE,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠E=∠DAE,
∴DA=DE.
20.解:
(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,
∴
=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,
解得:
m>﹣
.
(2)m=1,此时原方程为x2+3x=0,
即x(x+3)=0,
解得:
x1=0,x2=﹣3.
21.解:
(1)∵点B在直线l2上,
∴4=2m,
∴m=2,点B(2,4)
设直线l1的表达式为y=kx+b,
由题意
,解得
,
∴直线l1的表达式为y=
x+3.
(2)由图象可知n<2.
22.解:
小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:
(2×3+3×11+4)÷15=2.87,
远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,
小芸抽样的调查数据中,家庭人数的平均值为:
(2×2+3×7+4×4+5×2)÷15=3.4,
说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.
23.
(1)证明:
在△CAD中,∵M、N分别是AC、CD的中点,
∴MN∥AD,MN=
AD,
在Rt△ABC中,∵M是AC中点,
∴BM=
AC,
∵AC=AD,
∴MN=BM.
(2)解:
∵∠BAD=60°,AC平分∠BAD,
∴∠BAC=∠DAC=30°,
由
(1)可知,BM=
AC=AM=MC,
∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,
∵MN∥AD,
∴∠NMC=∠DAC=30°,
∴∠BMN=∠BMC+∠NMC=90°,
∴BN2=BM2+MN2,
由
(1)可知MN=BM=
AC=1,
∴BN=
24.解:
(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,
(2)设2013到2015的平均增长率为x,
则2406.7(1+x)2=3072.3,
解得x≈13%,
用近3年的平均增长率估计2016年的增长率,
∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.
故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.
25.
(1)证明:
∵ED与⊙O相切于D,
∴OD⊥DE,
∵F为弦AC中点,
∴OD⊥AC,
∴AC∥DE.
(2)解:
作DM⊥OA于M,连接CD,CO,AD.
首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.(方法二:
证明△ADE的面积等于四边形ACDE的面积的一半)
∵AC∥DE,AE=AO,
∴OF=DF,
∵AF⊥DO,
∴AD=AO,
∴AD=AO=OD,
∴△ADO是等边三角形,同理△CDO也是等边三角形,
∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,
∴AO∥CD,又AE=CD,
∴四边形ACDE是平行四边形,易知DM=
a,
∴平行四边形ACDE面积=
a2.
26.解:
(1)如图,
(2)①x=4对应的函数值y约为2.0;
②该函数有最大值.
故答案为2,该函数有最大值.
27.解:
(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,
∴抛物线顶点坐标(1,﹣1).
(2)①∵m=1,
∴抛物线为y=x2﹣2x,
令y=0,得x=0或2,不妨设A(0,0),B(2,0),
∴线段AB上整点的个数为3个.
②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,
∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),
当抛物线经过(﹣1,0)时,m=
,
当抛物线经过点(﹣2,0)时,m=
,
∴m的取值范围为
<m≤
.
28.解:
(1)∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ=20°,
∴∠AQB=∠APQ=∠BAP+∠B=80°;
(2)如图2,∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ,(将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM)
∵点Q关于直线AC的对称点为M,
∴AQ=AM,∠QAC=∠MAC,
∴∠MAC=∠BAP,
∴∠BAP+∠PAC=∠MAC+∠CAP=60°,
∴∠PAM=60°,
∵AP=AQ,
∴AP=AM,
∴△APM是等边三角形,
∴AP=PM.证明△ABP≌△ACM≌△BCK.
29.解:
(1)①∵A(1,0),B(3,1)
由定义可知:
点A,B的“相关矩形”的底与高分别为2和1,
∴点A,B的“相关矩形”的面积为2×1=2;
②由定义可知:
AC是点A,C的“相关矩形”的对角线,
又∵点A,C的“相关矩形”为正方形
∴直线AC与x轴的夹角为45°,
设直线AC的解析为:
y=x+m或y=﹣x+n
把(1,0)分别y=x+m,
∴m=﹣1,
∴直线AC的解析为:
y=x﹣1,
把(1,0)代入y=﹣x+n,
∴n=1,
∴y=﹣x+1,
综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;
(2)设直线MN的解析式为y=kx+b,
∵点M,N的“相关矩形”为正方形,
∴由定义可知:
直线MN与x轴的夹角为45°,
∴k=±1,
∵点N在⊙O上,
∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,
当k=1时,
作⊙O的切线AD和BC,且与直线MN平行,
其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,
连接OA,OC,
把M(m,3)代入y=x+b,
∴b=3﹣m,
∴直线MN的解析式为:
y=x+3﹣m
∵∠ADO=45°,∠OAD=90°,
∴OD=
OA=2,
∴D(0,2)
同理可得:
B(0,﹣2),
∴令x=0代入y=x+3﹣m,
∴y=3﹣m,
∴﹣2≤3﹣m≤2,
∴1≤m≤5,
当k=﹣1时,把M(m,3)代入y=﹣x+b,
∴b=3+m,
∴直线MN的解析式为:
y=﹣x+3+m,
同理可得:
﹣2≤3+m≤2,
∴﹣5≤m≤﹣1;
综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:
1≤m≤5或﹣5≤m≤﹣1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 北京市 数学试题 解析