高一数学教案函数的表示法教案语文.docx
- 文档编号:26363593
- 上传时间:2023-06-18
- 格式:DOCX
- 页数:10
- 大小:22.43KB
高一数学教案函数的表示法教案语文.docx
《高一数学教案函数的表示法教案语文.docx》由会员分享,可在线阅读,更多相关《高一数学教案函数的表示法教案语文.docx(10页珍藏版)》请在冰豆网上搜索。
高一数学教案函数的表示法教案语文
高一数学教案:
函数的表示法教案
【】欢迎来到查字典数学网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:
高一数学教案:
函数的表示法教案希望能为您的提供到帮助。
本文题目:
高一数学教案:
函数的表示法教案
一、内容与解析
(一)内容:
映射
(二)解析:
⑴映射是两个集合与中,元素之间存在的某种对应关系.说其是一种特殊的对应,就是因为它只允许存在一对一与多对一这两种对应,而不允许存在一对多的对应.
⑵映射中只允许一对一与多对一这两种对应的特点,从到的映射:
实际是要求集合中的任一元素都必须对应于集合中唯一的元素.但对集合中的元素并无任何要求,即允许集合中的元素在集合中可能有一个元素与之对应,可能有两个或多个元素与之对应,也可能没有元素与之对应.
⑶映射中对应法则是有方向的,一般来说从集合到集合的映射与从集合到集合的映射是不同的.
(4)我们可以把对应关系看成一面镜子,集合中的元素在这面镜子中存在一个像,一个相对应的元素,原像则是集合中的元素.这样像和原像的概念就比较容易理解.并且映射中集合的每一个元素在集合中都有它的像,通过对应关系即通过镜子总存在像,而且像是唯一的,不会照出许多的像来,这是映射区别于一般对应的本质特征.
二、目标及其解析:
(一)教学目标
(1)了解映射的概念及表示方法;结合简单的对应图示,了解一一映射的概念.
(2)解析:
重点把握映射与函数的区别。
三、问题诊断分析
函数与映射的区别与联系
(1)函数包括三要素:
定义域、值域、两者之间的对应关系;映射包括三要素:
集合A,集合B,以及A,B之间的对应关系
(2)函数定义中的两个集合为非空数集;映射中两个集合中的元素为任意元素,如人、物、命题等都可以.
(3)在函数中,对定义域中的每一个,在值域中都有唯一确定的函数值和它对应;在映射中,对集合A中的任意元素,在集合B中都有唯一确定的像和它对应.
(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的自变量的值和它对应;在映射中,对于集合B中的任一元素,在集合A中不一定有原像.
(5)函数实际上就是非空数集A到非空数集B的一
个映射
(6)通过右图我们可以清晰的看到这三者的关系.
四、教学支持条件分析
在本节课一次递推的教学中,准备使用PowerPoint2019。
因为使用PowerPoint2019,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。
五、教学过程
1.教学映射概念:
①先看几个例子,两个集合A、B的元素之间的一些对应关系,并用图示意
,对应法则:
开平方;
,,对应法则:
平方;
,对应法则:
求正弦;
②定义映射:
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping).记作
关键:
A中任意,B中唯一;对应法则f.
③分析上面的例子是否映射?
举例日常生活中的映射实例?
④讨论:
映射的一些对应情况?
(一对一;多对一)一对多是映射吗?
举例一一映射的实例(一对一)
2.教学例题:
①出示例1.探究从集合A到集合B一些对应法则,哪些是映射,哪些是一一映射?
A={P|P是数轴上的点},B=R;A={三角形},B={圆};
A={P|P是平面直角体系中的点},;A={高一某班学生},B=?
(师生探究从A到B对应关系辨别是否映射?
一一映射?
小结:
A中任意,B中唯一)
②讨论:
如果是从B到A呢?
③练习:
判断下列两个对应是否是集合A到集合B的映射?
A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则;
,对应法则;
设;
六、类型题探究
题型一映射的判断
例1下列集合到集合的对应中,判断哪些是到的映射?
判断哪些是到的一一映射?
(1),对应法则.
(2),,,,.
(3),,对应法则除以2得的余数.
(4),,对应法则
【思维导图】
【解答关键】根据给出的f分析这个对应是否为一对一与多对一若是则为映射,否则不是,再观察是不是一对一的对应,若是则为一一映射.
【规范解答】
(1)是映射,不是一一映射,因为集合中有些元素(正整数)没有原像.
(2)是映射,是一一映射.不同的正实数有不同的唯一的倒数仍是正实数,任何一个正数都存在倒数.
(3)是映射,因为集合中不同元素对应集合中相同的元素.
(4)是映射,不是一一映射,因为集合中的元素(如-4,4)都对应集合中的元素
(2).
【易错辨析】判断一个对应是不是映射或一一映射,应观察对应的特点;说明一个对应不是映射或一一映射,只须找出一个反例.对于一一映射是一种特殊的映射,它的判断主要考虑:
若⑴A中的不同元素在B中有不同的像;⑵B中任何一个元素在A中都有原像,则这个映射就是一一映射.
【活学活用】1.下列集合到集合的对应是映射的是()
A.:
中的数平方;
B.:
中的数求平方根;
C.:
中的数取倒数;
D.:
中的数取绝对值;
1.A.解析:
B中错误在集合A中的元素1在集合B中有两个元素-1,1与之对应,因此不是映射.C,D中错误都在于集合中有0这个元素在集合B中没有相对应的元素.
题型二映射对应法则的应用
例2已知A={1,2,3,},B={4,7,,},其中N+.若xA,yB,有对应关系:
是从集合A到集合B的一个映射,且=4,=7,试求的值.
【解答关键】先通过已知条件求得,再通过分析映射的两个集合中元素之间的关系,得出m、n之间的方程,解得相应的参数值.
【规范解答】由=4,=7,列方程组:
故对应法则为:
.
由此判断A中元素3的像是或.若=10,因N+不可能成立,所以=10,解得=2或n=-5(舍去).
又当集合A中的元素的像是时,即=16,解得=5.
当集合A中的元素的像是时,即=10,解得=3.由元素唯一性知,=3舍去.
故=3,q=1,=5,=3或=3,q=1,=5,=2.
【归纳总结】通过该题,加深对映射的理解,加深对映射中对应法则的理解和应用.解好此题的关键是分清原象和象各是谁,对应法则是什么,对应法则是如何把象与原象联系在一起的.映射是一种特殊的对应,函数是一种特殊的映射.
【活学活用】2.设f:
AB是A到B的一个映射,其中A=B={(x,y)|x,yR},f:
(x,y)(x-y,x+y),求A中元素(-1,2)的象和B中元素(-1,2)的原象.
2.这是一个映射的问题,由已知(x,y)的象为(x-y,x+y),确定了对应法则.
先求A中元素(-1,2)的象.令x=-1,y=2,
由题意得x-y=-1-2=-3,x+y=-1+2=1,所以(-1,2)的象为(-3,1);
再求B中元素(-1,2)的原象.令解得
所以(-1,2)的原象是(,).
题型三利用映射研究函数问题
例3设A={x∣02},B={y∣12},图中表示A到B的函数是()
【解答关键】本题已知两个集合为数集,再根据图像观察是否为映射,便可得出是否为函数.
【规范解答】首先C图中,A中同一个元素x(除x=2)与B中两个元素对应,它不是映射,当然更不是函数;其次,A、B两图中,A所对应的象的集合均为{y∣02},而{y∣02}B={y∣12},故它们均不能构成的函数.从而答案选D.
【易混辨析】本题根据映射观点下的函数定义直接求解.考察函数图像与映射之间的关系,此类问题回到定义中去,牢牢掌握映射的概念,就很容易解决,而关于映射知识点的考察,一般也是对其概念进行考察.函数首先必须是映射,是当集合A与B均为非空数集时的映射.因此,判断一个对应是否能构成函数,应判断:
①集合A与B是否为非空数集;②f:
AB能否为一个映射.另外,函数f:
AB中,象的集合M叫函数的值域,且MB.
【活学活用】3.图中表示的是从集合到集合的对应,其中能构成映射的是()
3.A解析:
到的一个对应能否构成到的映射的关键是:
集合中的任一元素都必须满足对应于集合中唯一的元素.因此,图象中必须满足对于的每一个值,必须有且只有唯一的值与之对应.不难得知应选A.
(二)小结
七、目标检测
一、选择题
1.设是集合A到B的映射,下列说法正确的是()
A、A中每一个元素在B中必有像B、B中每一个元素在A中必有原像
C、B中每一个元素在A中的原像是唯一的D、B是A中所在元素的像的集合
1.A解析:
是对映射概念的判断,对于答案B,D集合B中的元素在集合A中不一定有原像,因此也不是集合A中所在元素的像的集合.答案C自然也错.
2.下列各对应关系中,是从A到B的映射的有()
A、
(2)(3)B、
(1)(4)C、
(2)(4)D、
(1)(3)
2.D解析:
(1)(3)这两个图所表示的对应都符合映射的定义,对于
(2)中的元素都对应着两个元素,(4)中的元素没有元素与之对应.
3.点在映射下的对应元素为,则点在作用下的对应元素为()
A.B.C.D.
3.C解析:
,.
4.已知映射f:
AB,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的像,且对任意aA,在B中和它们对应的元素是|a|,则集合B中元素的个数是()
A.4B.5C.6D.7
4.A解析:
依题意,由AB的对应法则为f:
a|a|.于是,将集合A中的7个不同元素分别取绝对值后依次得3,2,1,1,2,3,4.由集合元素的互异性可知,B={1,2,3,4},它有4个元素,答案选A.
二、填空题
5.已知集合A={x∣04},B={y∣02},下列从A到B的对应f:
①f:
xy=
②f:
xy=③f:
xy=④f:
xy=
(1)其中不是映射的是;
(2)其中是一一映射的是.
5.
(1)③,
(2)①④解析:
.③中当x=4时在集合B中找不到对应的像.②中集合B中的像x=2找不到对应的原像.
6.已知集合A=Z,B={x|x=2n+1,nZ},C=R,且从A到B的映射是x2x-1,从B到C的映射是x,则从A到C的映射是____.
6.x解析:
A到C的映射为x.
7.若映射f:
AB的像的集合是Y,原像的集合是X,则X与A的关系是______,Y和B的关系是_____.
7.A=XYB解析:
是对映射概念的判断,显然X与A的关系是相等,因为B中每一个元素在A中不一定有原像,所以Y和B的关系是YB.
三、解答题
8.已知,,且从到的映射满足,试确定这样的映射的个数.
8.因为从到的映射满足,所以
⑴当时,有或或
⑵当时,有
综上,从到的映射中满足的映射的个数是4个.
9.已知映射f:
AB中,A=B={(x,y)∣xR,yR},f:
(x,y)(x+2y+2,4x+y).
(1)求A中元素(5,5)的像;
(2)求B中元素(5,5)的原像;
(3)是否存在这样的元素(a,b),使它的像仍是自己?
若有,求出这个元素.
9.
(1)由题意有A中元素(5,5)的像为
(2)B中元素(5,5)的原像满足x+2y+2=5,4x+y=5,解得.
所以B中元素(5,5)的原像为(1,1);
(3)假设存在这样的元素(a,b),使它的像仍是自己
它满足方程组x=x+2y+2,y=4x+y.解得,此元素为(0,-1).
高考能力演练
10.设A={(x,y)∣xR,yR}.如果由A到A的一一映射,使像集合中的元素(y-1,x+2)和原像集合中的元素(x,y)对应,那么像(3,-4)的原像是()
A.(-5,5)B.(4,-6)C.(2,-2)D.(-6,4)
10.D解析:
由像与原像的概念可知,本题中的对应法则是f:
(x,y)(y-1,x+2),问题即:
当点(y-1,x+2)是(3,-4)时,对应的x,y的值分别是多少?
于是由
,即像(-3,4)的原像是(-6,4),选D.
11.已知集合,,其中,.若,,映射:
使中元素和中元素对应.求和的值.
11.∵中元素对应中元素,
中元素的象是,的象是,的象是.,或.
又,,解之,得.
∵的象是,,解之,得.
12.现代社会对破译密文的难度要求越来越高,有一种密码把英文的明文(真实文)按两个字母一组分组(如果最后剩一个字母,则任意添一个字母,拼成一组),例如:
Wishy.usuccess,分组为Wi,sh,y.,us,uc,ce,ss得到
其中英文的a,b,c,,z的26个字母(不论大小写)依次对应的1,2,3,,26这26个自然数,见表格:
abcdefghijklm
12345678910111213
n.pqrstuvwxyz
14151617181920212223242526
给出如下一个变换公式将明文转换为密文.如
,即ce变成mc(说明:
2926余数为3).
又如,即wi变成.a(说明:
4126余数为15,10526余数为1).
(1)按上述方法将明文star译成密文;
(2)若按上述方法将某明文译成的密文是kcwi,请你找出它的明文.
12.
(1)将star分组:
st,ar,对应的数组分别为,
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:
“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:
“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
由得,.
star翻译成密文为ggkw.
(2)由得
将kcwi分组:
kc,wi,对应的数组分别为,,由得,.
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?
还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
密文kcwi翻译成明文为g..d.
【总结】2019年查字典数学网为小编在此为您收集了此文章高一数学教案:
函数的表示法教案,今后还会发布更多更好的文章希望对大家有所帮助,祝您在查字典数学网学习愉快!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教案 函数 表示 教案 语文