数字信号处理复习总结最终版.docx
- 文档编号:26229077
- 上传时间:2023-06-17
- 格式:DOCX
- 页数:107
- 大小:385.04KB
数字信号处理复习总结最终版.docx
《数字信号处理复习总结最终版.docx》由会员分享,可在线阅读,更多相关《数字信号处理复习总结最终版.docx(107页珍藏版)》请在冰豆网上搜索。
数字信号处理复习总结最终版
绪论:
本章介绍数字信号处理课程的基本概念
0.1信号、系统与信号处理
1•信号及其分类
信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:
周期信号/非周期信号
确定信号/随机信号能量信号/功率信号
连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:
时河
幅度
时域连续信号
连续
连续
模拟信号
连续
离散
呈化信号
时域离散信号
离散
连续
1采样信号
藹散
藹散
數字信号
2•系统
系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理
信号处理即是用系统对信号进行某种加工。
包括:
滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2数字信号处理系统的基本组成
而且
数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,
也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
精选
PrFADCDSPDACPoF
(1)前置滤波器
将输入信号Xa(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器
在A/D变换器中每隔T秒(抽样周期)取出一次Xa(t)的幅度,抽样后的信号称为离散信号。
在A/D
变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)
(4)D/A变换器
按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产
生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器
把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号ya(t)。
0.3数字信号处理的特点
(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4数字信号处理基本学科分支
数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术
DigitalSignalProcessing另一层是狭义的理解,为数字信号处理器DigitalSignalProcesso。
0.5课程内容
该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:
(1)离散傅里叶变换
及其快速算法。
(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号
频谱占据不同的频段)。
在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信
号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。
简答题:
1•按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?
2•相对模拟信号处理,数字信号处理主要有哪些优点?
3•数字信号处理系统的基本组成有哪些?
第一章:
本章概念较多,需要理解和识记的内容较多,学习时要注意。
厂几种常用序列
厂离散时间信号一序列间的运算
〔任意序列的单位脈冲表示
厂分类,线性.时不变*因果、稳定
—离散时间系统判别方法
丄皴性时不变系统输入输出的关系
时域描述差分方程
L采样定理
采样
数字彳口模拟之间的芜联」采样恢复
1.1离散时间信号
1•离散时间信号的定义
离散时间信号是指一个实数或复数的数字序列,它是整数自变量n的函数,表示为x(n)。
一般由模
拟信号等间隔采样得到:
x(n)爲LnTxa(nT)n。
时域离散信号有三种表示方法:
1)用集合符号表示2)用公式表示3)用图形表示
2•几种基本离散时间信号(记住定义)
(1)单位采样序列
(2)单位阶跃序列
Of
0 (3)矩形序列 (4)实指数序列;卜」 (5)正弦序列;';' 其它 3是正弦序列数字域的频率,单位是弧度。 对连续信号中的正弦信号进行采样,可得正弦序列。 设连续信号为=*: -,它的采样值为 琢)=唇3门=皿沁『,因此Q//(重点) 这个式子具有一般性,它反映了由连续信号采样得到的离散序列,其数字频率与模拟频率的一般关 系。 另外需要说明的是,3的单位为弧度,Q的单位为弧度/秒。 本书中,我们一律以3表示数字 域频率,而以Q及f表示模拟域频率。 例: 已知采样频率Ft=1000Hz,则序列x(n)=cos(0.4m)对应的模拟频率为(400n)弧度/s。 说明: 本题旨在理解数字频率与模拟频率之间的关系: Ft (6)复指数序列r 复指数序列是以余弦序列为实部、正弦序列为虚部所构成的一个复数序列。 (7)周期序列(重点) 所有n存在一个最小的正整数N,满足: x(n)x(nN),则称序列x(n)是周期序列,周期为 N。 (注意: 按此定义,模拟信号是周期信号,采用后的离散信号未必是周期的) 正弦序列sin(0n)的周期性: 例: 2kN oN2k,k为整数时,sin[o(nN)]sin(汕),即为周期性序列。 周期 0,式 中, k、N限取整数,且k的取值要保证N是最小的正整数。 可分几种情况讨论如下: (1)当2/0为整数时,只要k1周期为2/0。 (2)当2/0不是整数,而是一个有理数时,设 ,取k 是互为素数的整数(互为素数就是两个数没有公约数) 当2/0 Q,则N 0就为最小正整数,即P/Q,式中,p、Q P,即周期为P。 (3) 是无理数时,则任何k皆不能使N为正整数,这时,正弦序列不是周期性的。 例: X(n)=cos(0.4n)的基本周期为 [说明]基本周期的定义即计算公式: (_5_)。 N~k,其中N和k均为整数,N为基本周期(使得N为 最小整数时k取值)。 本题3=0.4 n,代入上式得到: N5,k1。 3.信号运算 (1)加法: 两个信号之和11'-■-由同序号的序列值逐点对应相加得到。 (2)乘法: 两个信号之积」■'由同序号的序列值逐点对应相乘得到。 (3)移位: '「•当',序列右移(称为延时);当’-',序列左移(称为超前)。 (4)翻转: .貯_十广 (5)尺度变换••畑二択宓)或"'GJ,其中皿和N都是正整数。 当■''■-: •时,序列'W是通过取x(n)的每第M个采样形成,这种运算称为下采样。 对于 刀二0,土眄士叭… 其它 这种运算称为上采样。 4.信号分解(重点) 任一信号x(n)可表示成单位脉冲序列的移位加权和: 如=・・+(-乃也+1)+x(O)5(m)+XI)盼一1)+… 充&0=另戒唧)3(总一沁 简记为 1.2时域离散系统 时域离散系统定义 x(n) y(n) y(n)Tx(n) 1线性系统(重点) T[a%(n)bx2(n)]ay,n)by? (n) 判定公式: 若yi(n)=T[Xi(n)]皿(n)=T[x2(n)]则y(n) 2时不变系统(重点) 判定公式: y(n)=T[x(n)]y(n-n°)=T[x(n-n°)] 例: 判断下列系统是否为线性、时不变系统。 (重点) (1)y(n)x(n)2x(n1)3x(n2); 2 (2)y(n)x(n); 解: 1 y(n)x(nn0)2x(nn。 1)3x(nn02) (1)令: 输入为x(nn°),输出为, y(nn。 )x(ng)2x(nn。 1)3x(nn。 2)y(n) 故该系统是时不变系统。 2)bx2(n2)) y(n)T[a^(n)bx? (n)] T[ax1(n)] ax1(n) 2a%(n1) 3ax1(n2) T[bx2(n)] bx2(n) 2bx2(n1) 3bx2(n2) T[a%(n) bx2(n)] aT[xdn)] bT[x2(n)] 故该系统是线性系统。 2 (2)y(n)x(n) 令: 输入为x(n n。 ),输出为y(n) x2(nn。 ): y(n n。 ) x2(nn。 ) y'(n) 故系统是时不变系统。 又因为 T[a%(n) bx2(n)] 2 (axdn)bx2(n)) ax/n)bx2(n)2(ax ,因为 aT[x,(n)]bT[x2(n)] 22 ax-! (n)bx2(n) 因此系统是非线性系统。 3线性时不变系统(LTI或者LSI系统)输入与输出之间关系(重 点): h(n)T[(n)] z m y(n) T[x(m)(nm)] m y(n) x(m)(nm) y(n)=x(m)h(nm)=x(n)*h(n) m 重点: 线性离不变系统的输出等于输入序列和该系统的单位脉冲响应的卷积 【说明】离散时间LTI系统的单位冲激响应h(n)为系统对单位冲激序列3(n)的零状态响应。 单位冲激响应的概念非常重要。 在时域,LTI系统可以由其单位冲激响应h(n)唯一确定,因此,我 们常常用单位冲激响应描述LTI系统。 在这种情况下,LTI系统的输入输出关系可以由卷积运算 描述: y(n)=x(m)h(nm)=x(n)*h(n) m 物理意义: 卷积和运算具有显式意义,即可以用来确定系统的输出。 如果系统确定,则其单位冲激响应是唯一的。 由此,可求系统对任意输入的响应。 注意: 计算卷积和的关键是求和区间的确定。 因此,常常需要绘制序列x(m)和h(n-m)的图形。 禾U 用序列x(m)和h(n-m)的图形可助我们方便地确定求和区间。 卷积的求解方法(重点): 线性卷积是一种非常重要的一种运算,对它的求解,一般我们采用作图法。 线性卷积满足交换律,设两序列长度分别是N和M,线性卷积后序列的长度为N+M-1。 卷积的计算过程包括翻转、移位、相乘、相加四个过程。 1)将「「和八': 用和'表示,画出'和T"这两个序列; 2)选择一个序列''"'■,并将其按时间翻转形成序列门■-; 3)将移位n得到-■"<; 4)将'■'和」": 相同m的序列值对应相乘后,再相加。 例: 设x(n)n,0wnw4,h(n)R4(n),x(n)和h(n)如图i所示。 求x(n)和h(n)的卷积y(n)o(重点) 解方法一: 用图解法求卷积和。 (1)将x(n)和h(n)用x(m)和h(m)表示(图2中(a)、(b)图)o 4- 4 ¥ k 1 1 丄 x(m) 01234 (a) R4(m) R4(m) m. -3-2-10 (c) (d) m) ITTm -1 012 fTTT: 0123 (b) &R4(2m) (e) y(n) 图2图解法求卷积过程 ⑵将h(m)进行反折,形成h(m)(图2中©图);将h(m)移位n,得到h(nm)(图2中(①、⑹、 (f)图)。 (3)将x(m)和h(nm)相同m的序列值相乘,再相加,得到y(n)(图2中(g)图)。 y(n)1,3,6,10,9,7,41 再讨论解析法求线性卷积。 用式y(n) x(m)h(nm) 求解上式首先要根据x(m)和h(nm)的非零值区间确定求和的上下限,x(m)的非零值区间为1wm<4,h(nm)的非零值区间为0 1wmw4和n3wmwn 因此 当n1、n7时,y(n)0; n(n1) 2 n y(n)m1 当1wnw3时,mo y(n) 当4wnw7时, (n1)(8n) 2 与图解法结果一致。 y(n)用公式表示为 n(n1)/2 y(n)(n1)(8n)/2 0 4wnw7 其他 方法二: 当序列x(n)和h(n)的长度分别为有限长N和M时,可采用“不进位乘法”求两序列线卷 0,1,2,3,4h(n)1,1,1,1 积。 X 01234 1111 0 01 01234 01234 1234 234 91 3610974 如图1所示: X(n) y(n)0,1,3,6,10,9,7,4 例: 两线性时不变系统级联,其单位取样响应分别为h/n)和h2(n),输入为x(n),求系统的输出 y(n)。 已知: x(n)u(n),h1(n)(n)(n4),h? (n)anu(n)。 解: 设第一个系统的输出为(n),则 (n)x(n)h(n)u(n)[(n)(n4)] u(n)u(n4) (n)+(n1)+(n2)+(n3) 因而输出为 y(n)(n)h2(n)[(n)(n1)(n2)(n3)]anu(n) n#、n1n2n3 au(n)au(n1)au(n2)au(n3) 4.系统因果性和稳定性的判定(重点) 1) |x(n)I,则|y(n)I(记住! ! ) 稳定系统: 有界的输入产生的输出也有界的系统,即: 若 线性移不变系统是稳定系统的充要条件: |h(n)|(系统稳定的充分必要条件是系统的单位脉 n 冲响应绝对可和)(记住! ! ) 或: 其系统函数H(z)的收敛域包含单位圆|z|=1(记住! ! ) 2)因果系统: no时刻的输出y(n°)只由n°时刻之前的输入x(n),nn°决定(记住! ! ) 线性移不变系统是因果系统的充要条件: h(n)0,n0(记住! ! )因果系统的单位脉冲响应必然是 因果序列。 (记住! ! ) 或: 其系统函数H(z)的收敛域在某圆外部: 即: |z|>Rx(记住! ! ) 3)稳定因果系统: 同时满足上述两个条件的系统。 ,h(n)0,n0(记住! ! ) 线性移不变系统是因果稳定系统的充要条件: |h(n)| n 或: H(z)的极点在单位圆内H(z)的收敛域满足: |z|Rx,Rx1(记住! ! ) 例: 判断线性时不变系统的因果性、稳定性,并给出依据。 (重点) 1N1 (1)y(n)—x(nk); Nk0 nn。 (2)y(n)x(k); knn° n时刻的和n时刻以前的输入有关。 如 解: (1)只要N1,该系统就是因果系统,因为输出只与 果x(n)M,贝Uy(n)M,因此系统是稳定系统。 nw (2)如果x(n)M,y(n)|x(k)||2n。 1M,因此系统是稳定的。 系统是非因果的, knn0 因为输出还和x(n)的将来值有关。 注意: 如果给出的是h(n),用上面要求记住的充要条件判断! 例: 设某线性时不变系统的单位取样响应为h(n)^u(n)(a为实数),分析系统的因果性和稳定 性。 (重点) 解: 讨论因果性: 因为n°时,h(n)0,所以该系统是因果系统。 讨论稳定性: h(n) n 当a1时,系统是稳定的;否则,系统不稳定。 例: 设某线性时不变系统的单位取样响应为h(n)a°u(n1)(a为实数),分析系统的因果性 和稳定性。 (重点) 解: 讨论因果性: 因为n0时,h(n)0,所以该系统是非因果系统。 讨论稳定性: na a n (占)n a 1 n1 n1a 1时,系统是稳定的;否则,系统不稳定。 1 h(n) nn 1 1.3线性常系数差分方程 1差分方程定义 卷积和是一种LTI系统的数学模型,一般情况下,我们可以用差分方程描述LTI系统的输入输出 N 关系。 aky[nk] k0 bkX[nk] k0 差分方程给出了系统响应 y[n]的内部关系。 为得到y[n]的显式解,必须求解方程。 2差分方程求解 ①经典法②递推法③变换域法(参见下章z域变换)(重点) 例: 设系统的差分方程为y(n)0.5y(n1)1.5x(n),输入序列为x(n)(n),求输出序列 y(n)。 解: 一阶差分方程需一个初始条件。 设初始条件为: y (1)0 则y(0)0.5y (1)1.5x(0)1.5 y (1)0.5y(0)1.5x (1)0.75 y (2)0.5y (1)1.5x (2)0.375 y(n)1.5(0.5)nu(n) 设初始条件改为: y (1)1 则y(0)0.5y (1)1.5x(0)2 y (1)0.5y(0)1.5x (1)1 y (2)0.5y (1)1.5x (2)0.5 y(n)2(0.5)nu(n) 该例表明,对于同一个差分方程和同一个输入信号,因为初始条件不同,得到的输出信号是不相同 的。 几点结论(重点) (1)对于实际系统,用递推解法求解,总是由初始条件向n>0的方向递推,是一个因果解。 但对 精选 于差分方程,其本身也可以向n<0的方向递推,得到的是非因果解。 因此差分方程本身不能确定 该系统是因果系统还是非因果系统,还需要用初始条件进行限制。 (2)一个线性常系数差分方程描述的系统不一定是线性非时变系统,这和系统的初始状态有关。 如果系统是因果的,一般在输入x(n)=0(n 1.4模拟信号数字处理方法 1模拟信号数字处理框图 血⑵,顾徳闽—>—寸数字信号处―>|dzac]―平漕滤波|M* Xa(t): 模拟信号输入 预滤波: 目的是限制带宽(一般使用低通滤波器) 1采样: 将信号在时间上离散化 A/DC: 模/数转换 2量化: 将信号在幅度上离散化(量化中幅度值=采样幅度值) ◎编码: 将幅度值表示成二进制位(条件f$2f) 数字信号处理: 对信号进行运算处理 D/AC: 数/模转换(一般用采样保持电路实现: 台阶状连续时间信号在采样时刻幅度发生跳变) 平滑滤波: 滤除信号中高频成分(低通滤波器),使信号变得平滑 ya(t): 输入信号经过处理后的输出信号 2.连续信号的采样 对连续信号进行理想采样,设采样脉冲,则采样输出 盒(◎二无©遇®二$血(◎郭-用幻 花一g 在讨论理想采样后,信号频谱发生的变化时,可遵循下面的思路: 门由2)由[「—\「; A1 差(G)二厂兀(门尸耳㈡)]$口 3)根据频域卷积定理,由: '■计算出■-■■■■'■o 计算过程: 2)周期信号可以用傅里叶级数展开,因此 务 »—0 其中系数 A=老匸: 务时叫t=*J;: 0伽皿矗=*£;;处)必=+ 所以 ^r&)=事乞尹心0=0H142 L»,--8 其傅里叶变换 2jf“ 昂®)=〒迟汉心-挖2) 』JBKfi 11w牛打7 A(G)=「[血(C尸耳(G)]=云;匚瓦⑴-宁迟心-W 3) 4tEX召(G—冲)-近(G—加门卜一t)日tTM--0V 因此,采样后信号频谱产生周期延拓,周期为 Qs,同时幅度为原来的1/T 倍。 这是一个非常重要的性质,应熟练掌握。 3时域抽样定理(重点) 一个限带模拟信号Xa(t),若其频谱的最高频率为Fo,对它进行等间隔抽样而得x(n),抽样周期 为T,或抽样频率为Fs1/T;只有在抽样频率Fs2Fo时,才可由Xa(t)准确恢复x(n)。 例: 有一连续信号Xa(t)C0S(2ft),式中, 20H乙 2 (1)求出Xa(t)的周期。 (2)用采样间隔T°.02s对Xa(t)进行采样,试写出采样信号%(t)的表达式。 (3)求出对应%⑴的时域离散信号(序列)x(n),并求出x(n)的周期。 解: (1)xa(t)周期为T 10.05s (2)x(t)x(t)(tnT)cos(2fnT)(tnT)(T0.05s) nn (3)x(n)的数字频率3=0.8n,故5,因而周期N=5,所以x(n)=cos(0.8nn+n/2) 0.82 简答题: (重点) 1.是不是任意连续信号离散后,都可从离散化后的信号恢复出原来的信号? 为什么? 2.一个连续时间信号经过理想采样以后,其频谱会产生怎样的变化? 在什么条件下,频谱不会产 生失真? 3.说明时域采样定理的要点? 4.离散信号频谱函数的一般特点是什么? 5.画出模拟信号数字处理框图。 并说明各部分的作用。 名词解释: (重点 1.时域采样定理 2.线性系统、时不变系统、稳定系统、因果系统 第二章: 本章涉及信号及系统的频域分析方法, 概念较多,但很基础,学习时要注意。 L定义 DTFT —系统函数 -T 1—性质 一定义 一序列特性对乂变换收敛域的影响 …性质 —Z反娈换 —系统亟数的走文 —系统凿数和羞分方程 —系统函数的收集域与系统的因果稳定性 I—頻率II旬应的几何确宦 2.1序列的傅里叶变换的定义及性质 1•定义 DTFT是一个用来确定离散时间序列频谱的重要数学工具。 物理意义: 傅里叶变换是将对信号的时域分析转换为对其在频域的分析,便于研究问题。 若序列";: 满足绝对可和条件 则其离散时间傅里叶变换(DiscreteTimeFourierTransform-DTFT: 非周期序列的傅里叶变换)定义 为 X(ej)x[n]ejn------(记住! ! ) n 反变换定义为: 1 x[n]X(ej)ejnd 傅里叶变换对;"■' 例: 设x(n)&(n),求其序列傅里叶变换。 (重点) X(ej) x(n)ejn DTFT[x(n)] n N1 ejn n0 Nsin2 RN(n)ejn jN/2e T e jN/2 e 72j~TT~ e jN/2e e .N1 ef sin— 2 X(e)的幅度和相位随 变化曲线如图2.1所示。 —e /2 (2-5) jsin2X(ej)sin arg[X(e
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 复习 总结 最终版
