精品小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案.docx
- 文档编号:26059448
- 上传时间:2023-06-17
- 格式:DOCX
- 页数:25
- 大小:73.33KB
精品小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案.docx
《精品小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案.docx》由会员分享,可在线阅读,更多相关《精品小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案.docx(25页珍藏版)》请在冰豆网上搜索。
精品小学数学行程问题之相遇与追及完整版题型讲解与训练带详细答案
基本的相遇与追及问题
(一)
例题讲解:
【例题1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?
【巩固1】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?
【例题2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?
【巩固2】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?
【例题3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?
【巩固3】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:
两车出发后多长时间相遇?
【例题4】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.
【巩固4】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?
【例题5】甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?
【巩固5】妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?
【例题6】甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?
【巩固6】甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?
【例题7】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?
【巩固7】(全国希望杯数学邀请赛)甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇.A、B两地相距多少千米?
【例题8】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车4次,每次停车15分钟,经过7小时两车相遇,求两城的距离?
【巩固8】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车5次,每次停车12分钟,经过7小时两车相遇,求两城的距离?
【例题9】甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?
这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?
【巩固9】南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?
.
【例题10】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发3小时他们相距多少千米?
【巩固10】两列火车从相距80千米的两城背向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车相距多少千米?
【例题11】两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?
【巩固11】八戒和悟空两家相距255千米,两人同时骑车,从家出发相对而行,悟空每小时行45千米,八戒每小时行40千米.两人相遇时,悟空和八戒各行了多少千米?
【例题12】两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?
【巩固12】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?
为什么?
【例题13】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
【巩固13】两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?
【例题14】(2008年第六届希望杯一试)甲乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是l0千米时,他们走了___________小时.
【巩固14】一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?
【例题15】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?
【巩固15】两列火车从相距40千米的两城背向而行,甲列车每小时行35千米,乙列车每小时行40千米,5小时后,甲、乙两车相距多少千米?
相遇与追及问题题型训练
(二)
【例题1】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?
【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?
(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).
【例题2】甲、乙两地相距240千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?
(火车长度忽略不计)
【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:
乙经过多长时间能追上甲?
【例题3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?
【巩固3】甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?
【例题4】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?
当爸爸追上小明时他们离家多远?
【巩固4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?
【例题5】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.
【巩固5】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?
【例题6】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?
【例题7】小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?
【巩固7】六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?
【例题8】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?
【巩固8】小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王迟到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?
【例题9】甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.
【巩固9】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?
【例题10】甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?
【巩固10】甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
【例题11】甲、乙两车分别从A、B两地出发,同向而行,乙车在前,甲车在后.已知甲车比乙车提前出发1小时,甲车的速度是96千米/小时,乙车每小时行80千米.甲车出发5小时后追上乙车,求A、B两地间的距离.
【巩固11】一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?
【例题12】小明的家住学校的南边,小芳的家在学校的北边,两家之间的路程是1410米,每天上学时,如果小明比小芳提前3分钟出发,两人可以同时到校.已知小明的速度是70米/分钟,小芳的速度是80米/分钟,求小明家距离学校有多远?
【巩固12】学校和部队驻地相距16千米,小宇和小宙由学校骑车去部队驻地,小宇每小时行12千米,小宙每小时行15千米.当小宇走了3千米后,小宙才出发.当小宙追上小宇时,距部队驻地还有多少千米?
【例题13】甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20千米,比甲车提前2小时到达.求A、B两地间的距离.
【巩固13】龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:
“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题:
它们谁胜利了?
为什么?
【例题14】军事演习中,“我”海军英雄舰追及“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?
【巩固14】上一次龟兔赛跑兔子输得很不服气,于是向乌龟再次下战书,比赛之前,为了表示它的大度,它让乌龟先跑10分钟,但是兔子不知道乌龟经过锻炼,速度已经提高到5倍,那么这一次谁将获得胜利呢?
【例题15】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?
【巩固15】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?
相遇与追及问题题型训练(三)
【例题1】甲乙两车分别从A、B两地同时相向开出,4小时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米.问:
甲车到达B地时,乙车还要经过多少时间才能到达A地?
【巩固1】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?
【例题2】小红和小强同时从家里出发相向而行。
小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。
若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。
小红和小强的家相距多远?
【巩固2】小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇.有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
【例题3】小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?
【巩固3】甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:
甲、乙二人的速度各是多少?
【例题4】刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?
【巩固4】王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
【例题5】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
两人的上山速度都是20米/分,下山的速度都是30米/分。
甲到达山脚立即返回,乙到达山顶休息30分钟后返回,两人在距山顶480米处再次相遇。
山道长米。
【巩固5】小张和小王早晨8点整同时从甲地出发去乙地,小张开车,速度是每小时60千米.小王步行,速度为每小时4千米.如果小张到达乙地后停留1小时立即沿原路返回,恰好在10点整遇到正在前往乙地的小王.那么甲、乙两地之间的距离是多少千米?
【例题6】早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是15千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨几点出发?
【巩固6】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离.
【参考答案】
(一)
例题1:
【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:
(46+48)×3.5=94×3.5=329(千米).
巩固1
【解析】根据相遇公式知道相遇时间是:
255÷(45+40)=255÷85=3(小时),所以甲走的路程为:
45×3=135(千米),乙走的路程为:
40×3=120(千米).
例题2:
【解析】大头儿子和小头爸爸的速度和:
3000÷50=60(米/分钟),
小头爸爸的速度:
(60+24)÷2=42(米/分钟),
大头儿子的速度:
60-42=18(米/分钟).
巩固2:
【解析】由题意知聪聪的速度是:
20+42=60(米/分),
两家的距离=明明走过的路程+聪聪走过的路程
=20×20+62×20=400+1240=1640(米),
例题3:
【解析】包子的速度:
90÷30=3(米/秒),
菠萝的速度:
90÷15=6(米/秒),
相遇的时间:
90÷(3+6)=10(秒),
包子距B地的距离:
90-3×10=60(米).
巩固3:
【解析】要求两车的相遇时间,则必须知道它们各自的速度,
甲车的速度是360÷4=90(千米/时),
乙车的速度是360÷12=30(千米/时),
则相遇时间是360÷(90+30)=3(小时).
例题4:
【解析】这题不同的是两车不“同时”.
求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.
48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).
巩固4:
【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:
41×2=82(千米),甲、乙两车同时相对而行路程:
770-82=688(千米),甲、乙两车速度和45+41=86(千米/时),甲车行的时间:
688÷86=8(小时).
例题5:
【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:
22×2=44(千米),甲、乙两车同时相对而行路:
144-44=100(千米),甲、乙两车速度和:
28+22=50(千米),与乙车相遇时甲车行的时间为:
100÷50=2(小时).
巩固5:
【解析】妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:
(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).
例题6:
【解析】因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:
(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:
70×4=280(千米)相遇时货车行驶的路程:
50×(4+1)=250(千米).
巩固6:
【解析】(366-37×2)÷(37+36)=4(小时)
例题7:
【解析】题目中写的“还”相距15千米指的就是最简单的情况。
画线段图如下:
由图中可以看出,甲行驶了3+5=8(小时),行驶距离为:
48×8=384(千米);乙行驶了5小时,行驶距离为:
50×5=250(千米),此时两车还相距15千米,所以A、B两地间相距:
384+250+15=649(千米)
巩固7:
【解析】公式“相遇时间
路程和
速度和”中,对于速度不变的两车,“相遇时间”与“路程和”是一一对应的.如图所示
5小时的相遇时间与A、B两地的距离相对应,(5-2)小时的相遇时间与141千米相对应.两车的速度之和是:
141÷(5-2)=47(千米/时).AB两地相距:
47×5=235(千米)
例题8:
【解析】每列车停车时间:
15×4=60(分)=1(小时),两列车停车时间共2小时,共同行驶时间:
7-1=6小时,速度和40+45=85(千米),两城距离:
85×6=510(千米).
巩固8:
【解析】每列车停车时间:
12×5=60(分)=1(小时),两列车停车时间共2小时,共同行驶时间:
7-1=6小时,速度和:
40+45=85(千米),两城距离:
85×6=510(千米).
例题9:
【解析】①4小时后相差多少千米:
(340-300)×4=160(千米).
②甲机提高速度后每小时飞行多少千米:
160÷2+340=420(千米).
巩固9:
【解析】两人虽然不是相对而行,但是仍合力完成了路程,(50+60)×5=550(千米).
例题10:
【解析】两人虽然不是相对而行,但是仍合力完成了路程,(50+60)×3=330(千米).
巩固10:
【解析】因为是背向而行,所以每过1小时,两车就多相距40+42=82(千米),则5小时后两车相距是:
(40+42)×5+80=490(千米).
例题11:
【解析】甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时乙到达目标时所用时间:
900÷100=9(分钟),甲9分钟走的路程:
80×9=720(米),甲距目标还有:
900-720=180(米),相遇时间:
180÷(100+80)=1(分钟),共用时间:
9+1=10(分钟).
巩固11:
【解析】要求他们各行了多少千米,那么就必须知道他们行驶的时间:
255÷(45+40)=3(小时).悟空:
45×3=135(千米),八戒:
40×3=120(千米).
例题12:
【解析】根据题意列综合算式得到:
3300÷(82+83)-15=5(分钟),所以两个人还需要5分钟相遇。
巩固12:
【解析】40+5=45(千米),(40+45)×4=340(千米),340千米<400千米,因为两车4小时共行340千米,所以4小时后两车没有相遇.
例题13:
【解析】注意:
“还相距”与“相距”的区别.建议教师画线段图.可以先求出2小时孙悟空和猪八戒走的路程:
(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:
700+500=1200(千米).
巩固13:
【解析】所求问题=全程-4小时行驶的路程和.路程和:
38×4+40×4=312(千米),
450-312=138(千米).
例题14:
【解析】有两种情况,一种是甲乙两人一共走了30-10=20(千米),一种是甲乙两人一共走了30+10=40(千米),所以有两种答案:
(30-10)÷(6+4)=2(小时)或(30+10)÷(6+4)=4(小时)
巩固14:
【解析】两车在相距450千米的两地相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米,这时两车共行的路程应为(450-90)千米.即(450-90)÷(40+50)=4(小时).需要注意的是当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米.这时两车共行的路程为450+90千米,即(450+90)÷(40+50)=6(小时).
例题15:
【解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品小学数学 行程问题之相遇与追及 完整版题型讲解与训练 带详细答案 精品 小学 数学 行程 问题 相遇 完整版 题型 讲解 训练 详细 答案