外文翻译基于优化的牛顿拉夫逊法和牛顿法的潮流计算.docx
- 文档编号:25973024
- 上传时间:2023-06-16
- 格式:DOCX
- 页数:13
- 大小:91.07KB
外文翻译基于优化的牛顿拉夫逊法和牛顿法的潮流计算.docx
《外文翻译基于优化的牛顿拉夫逊法和牛顿法的潮流计算.docx》由会员分享,可在线阅读,更多相关《外文翻译基于优化的牛顿拉夫逊法和牛顿法的潮流计算.docx(13页珍藏版)》请在冰豆网上搜索。
外文翻译基于优化的牛顿拉夫逊法和牛顿法的潮流计算
外文翻译--基于优化的牛顿—拉夫逊法和牛顿法的潮流计算
英文文献
PowerFlowCalculationbyCombinationofNewton-RaphsonMethodandNewton’sMethodinOptimization.
AndreyPazderin,SergeyYuferev
URALSTATETECHNICALUNIVERSITY?
UPI
E-mail:
pav@//0>.,usv@//.
Abstract--Inthispaper,theapplicationoftheNewton’smethodinoptimizationforpowerflowcalculationisconsidered.Convergenceconditionsofthesuggestedmethodusinganexampleofathree-machinesystemareinvestigated.Itisshown,thatthemethodallowstocalculatenon-existentstatepointsandautomaticallypullsthemontotheboundaryofpowerflowexistencedomain.AcombinedmethodwhichiscomposedofNewton-RaphsonmethodandNewton’smethodinoptimizationispresentedinthepaper.
IndexTerms?
Newtonmethod,Hessianmatrix,convergenceofnumericalmethods,steadystatestability
Ⅰ.INTRODUCTION
ThesolutionofthepowerflowproblemisthebasisonwhichotherproblemsofmanagingtheoperationanddevelopmentofelectricalpowersystemsEPSaresolved.Thecomplexityoftheproblemofpowerflowcalculationisattributedtononlinearityofsteady-stateequationssystemanditshighdimensionality,whichinvolvesiterativemethods.Thebasicproblemofthepowerflowcalculationisthatofthesolutionfeasibilityanditerativeprocessconvergence[1].
Thedesiretofindasolutionwhichwouldbeontheboundaryoftheexistencedomainwhenthegivennodalcapacitiesareoutsidetheexistencedomainofthesolution,anditisrequiredtopullthestatepointbackontothefeasibilityboundary,motivatestodevelopmethodsandalgorithmsforpowerflowcalculation,providingreliableconvergencetothesolution.
ThealgorithmforthepowerflowcalculationbasedontheNewton'smethodinoptimizationallowstofindasolutionforthesituationwheninitialdataareoutsidetheexistencedomainandtopulltheoperationpointontothefeasibilityboundarybyanoptimalpath.AlsoitispossibletoestimateastaticstabilitymarginbyutilizingNewton'smethodinoptimization.
AsthealgorithmbasedontheNewton’smethodinoptimizationhasconsiderablecomputationalcostandpowercontrolcannotberealizedinallnodes,thealgorithmbasedonthecombinationoftheNewton-RaphsonmethodsandtheNewton’smethodinoptimizationisofferedtobeutilizedforcalculatingspeed,enhancingthepowerflowcalculation.
II.THEORETICALBACKGROUND
A.Steady-stateequations
Thesystemofsteady-stateequations,ingeneral,canbeexpressedasfollows:
whereisthevectorofparametersgivenforpowerflowcalculation.Inpowerflowcalculation,realandreactivepowersaresetineachbusexceptfortheslackbus.Ingenerationbuses,themodulusofvoltagecanbefixed.WX,Yisthenonlinearvectorfunctionofsteady-stateequations.VariablesYdefinethequasi-constantparametersassociatedwithanequivalentcircuitofanelectricalnetwork.Xisarequiredstatevector,itdefinessteadystateofEPS.Thedimensionofthestatevectorcoincideswiththenumberofnonlinearequationsofthesystem1.Therearevariousknownformsofnotationofthesteady-stateequations.Normally,theyarenodal-voltageequationsintheformofpowerbalanceorintheformofcurrentbalance.Complexquantitiesintheseequationscanbepresentedinpolarorrectangularcoordinates,whichleadstoasufficientlylargevarietyformsofthesteady-stateequationsnotation.Therearevariablemethodsofanonlinearsystemofsteady-stateequationssolution.TheyareunitedbytheincrementalvectorofindependentvariablesΔXbeingsearchedandtheconditionofconvergencebeingassessedateachiteration.
B.TheNewton'smethodinoptimization
Anotherwayofsolvingtheproblemofpowerflowcalculationisrelatedtodefiningazerominimumofobjectivefunctionofsquaressumofdiscrepanciesofsteady-state
equations:
2?
Thefunctionminimum2isreachedatthepointwherederivativesonallrequiredvariablesareequaltozero:
3
Itisnecessarytosolveanonlinearsetofequations3tofindthesolutionfortheproblem.Calculatingthepowerflow,whichismadebythesystemofthelinearequationswithaHessianmatrixateachiteration,isreferredtoastheNewton's
methodinoptimization[4]:
4
TheHessianmatrixcontainstwoitems:
5
Duringthepowerflowcalculation,thedeterminantofHessianmatrixispositiveroundzeroandnegativevalueofadeterminantofJacobian.Thisallowstofindthestatepointduringthepowerflowcalculation,wheninitialpointhasbeenoutsideoftheexistencedomain.
TheconvergencedomainofthesolutionoftheNewton'soptimizationmethodislimitedbyapositivevalueoftheHessianmatrixdeterminant.Theiterativeprocessevenforasolvableoperatingpointcanconvergetoanincorrect
solutionifinitialapproximationhasbeenoutsideconvergencedomain.Thisallowstoestimateastaticstabilitymarginofthestateandtofindthemostperilouspathofitsweighting.
III.INVESTIGATIONSONTHETESTSCHEME
ConvergenceoftheNewton'smethodinoptimizationwithafullHessianmatrixhasbeeninvestigated.CalculationsweremadebasedonprogramMathCADforanetworkcomprisingthreebusestheparametersofwhicharepresentedinFigure1.Dependantvariableswereanglesofvectorsofbusvoltage1and2,independentvariableswerecapacitiesinnodes1and2,andabsolutevaluesofvoltagesofnodes1,2and3werefixed.
Fig.1?
TheTestscheme
InFigure2,theboundaryofexistencedomainforasolutionofthesteady-stateispresentedinangularcoordinatesδ1-δ2.ThisboundaryconformstoapositivevalueoftheJacobiandeterminant:
AsaresultofthepowerflowcalculationbasedontheNewtonmethodinoptimization,theanglevalueshavebeenreceived,thesevaluescorrespondingtothegivencapacitiesinFig.2generationispositiveandloadingisnegative.
Forthestatepointswhichareinsidetheexistencedomain,theobjectivefunction2hasbeenreducedtozero.Forthestatepointswhichareontheboundaryoftheexistencedomain,objectivefunction2hasnotbeenreducedtozeroandthecalculatedvaluesofcapacitiesdifferedfromthegivencapacities.
Fig.2?
DomainofExistenceforaSolution
Fig.3-BoundaryofexistencedomainInFig.3,theboundaryoftheexistencedomainispresentedincoordinatesofcapacitiesP1-P2.Statepointsoccurringontheboundaryoftheexistencedomain6havebeensetbythecapacitieswhichwereoutsidetheexistencedomain.Asa
resultofpowerflowcalculationbyminimization2basedontheNewton'smethodinoptimization,theiterativeprocessconvergestothenearestboundarypoint.Itisduetothefactthatsurfacesoftheequallevelofobjectivefunction2incoordinatesofnodalcapacitiesarepropercirclesforthreemachinesystemhavingthecentreonthepointdefinedbygivenvaluesofnodalcapacitiesThegraphicinterpretationofsurfacesoftheequallevelofobjectivefunctionforoperatingpointstatewith13000MWloadingbus1and15000MWgeneratingbus2ispresentedinFig.3.
Hessianmatrixisremarkableinitsbeingnotsingularontheboundaryofexistencedomain.ThedeterminantofaHessianmatrix5ispositivearoundzeroandanegativevalueoftheJacobianmatrixdeterminant.Thisfactallowsthepowerflowtobecalculatedevenfortheunstablepointswhichareoutsideexistencedomain.Theiterativeprocessbasedonthesystemofthelinearequations4solutionhasconvergedtothecriticalstabilitypointwithin3-5iteration.Naturally,theiterativeprocessbasedonNewton-Rapsonmethodisdivergentforsuchunsolvableoperatingpoints.
Theconvergencedomainofthemethodunderconsiderationhasbeeninvestigated.Whatismeantisthatnotallunsolvableoperatingpointswillbepulledontothe
boundaryofexistencedomain.Acertainthresholdhavingbeenexceededtheiterativeprocesshasbeguntoconvergetotheimaginarysolutionwithanglesexceeding360Itisnecessarytonotethattoreceiveacriticalstabilityoperatingpointincasewheninitialnodalcapacitiesaresetoutsidetheboundaryoftheexistencedomain,thereisnonecessitytomakeanyadditionaltermsastheiterativeprocessconvergesnaturallytothenearestboundarypoint.
Pullingtheoperationpointontofeasibilityboundaryisnotalwayspossiblebytheshortestandoptimalpath.Thereareanumberofconstraints,suchasimpossibilityofloadconsumptionincreaseatbuses,constraintsofgenerationshedding/gainingatstations.Loadfollowingcapabilityofgeneratorunitsisvarious,consequentlyforfasterpullingtheoperationpointontothefeasibilityboundaryitisnecessaryto
carryoutthispullingprobablybylonger,butfasterpath.
Thealgorithmprovidespossibilityofpathcorrectionofpulling.Itiscarriedoutbyusingoftheweightingcoefficients,whichdefinedegreeofparticipationofeach
nodeintotalcontrolaction.ForthispurposediagonalmatrixAoftheweightingcoefficientsforeachnodeisincludedintotheobjectivefunction2:
AlldiagonalelementsoftheweightingcoefficientmatrixAshouldbegreater-thanzero:
Wheninitialapproximationliesintothefeasibilitydomain,coefficientsarenotinfluenceonthecomputationalprocessandontheresult.
Inthefigure4differentpathsofthepullingthesameoperationpointontofeasibilityboundarydependingontheweightingcoefficientsarepresented.Pathsarepresentedfortwodifferentoperatingpoints.
IntablesIandIIeffectofweightingcoefficientsontheoutputcomputationispresented.IntablesIandIIk1andk2areweightingcoefficientforbuses1and2,respectively.
TABLEI
WEIGHTINGCOEFFICIENTEFFECTONOUTPUTCOMPUTATIONFORINITIALSETCAPACITIESP1-13000MWANDP21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 外文 翻译 基于 优化 牛顿 拉夫逊法 潮流 计算