新人教版八年级数学下册全套上课学习教案.docx
- 文档编号:25933087
- 上传时间:2023-06-16
- 格式:DOCX
- 页数:16
- 大小:21.86KB
新人教版八年级数学下册全套上课学习教案.docx
《新人教版八年级数学下册全套上课学习教案.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册全套上课学习教案.docx(16页珍藏版)》请在冰豆网上搜索。
新人教版八年级数学下册全套上课学习教案
新人教版八年级数学下册全套教案
本资料为woRD文档,请点击下载地址下载全文下载地址
www.5y
kj.co
m 第十六章
分式
6.1分式
6.1.1从分数到分式
一、教学目标
.了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
.重点:
理解分式有意义的条件,分式的值为零的条件.
2.难点:
能熟练地求出分式有意义的条件,分式的值为零的条件.
3.认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
三、例、习题的意图分析
本章从实际问题引出分式方程=,给出分式的描述性的定义:
像这样分母中含有字母的式子属于分式.不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.
.本节进一步提出P4[思考]让学生自己依次填出:
,,,.为下面的[观察]提供具体的式子,就以上的式子,,,,有什么共同点?
它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是
(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.
希望老师注意:
分式比分数更具有一般性,例如分式
可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数.
2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?
由分数的分母不能为零,用类比的方法归纳出:
分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式
才有意义.
3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?
”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:
○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.
四、课堂引入
.让学生填写P4[思考],学生自己依次填出:
,,,.
2.学生看P3的问题:
一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?
它们与分数有什么相同点和不同点?
五、例题讲解
P5例1.当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:
当x为何值时,分式无意义.你知道怎么解题吗?
这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
例2.当m为何值时,分式的值为0?
(1)
(2)
[分析]分式的值为0时,必须同时满足两个条件:
○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案]
(1)m=0
(2)m=2
(3)m=1
六、随堂练习
.判断下列各式哪些是整式,哪些是分式?
9x+4,
,
,
,
,
2.当x取何值时,下列分式有意义?
(1)
(2)
(3)
3.当x为何值时,分式的值为0?
(1)
(2)
七、课后练习
.列代数式表示下列数量关系,并指出哪些是正是?
哪些是分式?
x与y的差于4的商是
.
2.当x取何值时,分式
无意义?
3.当x为何值时,分式
的值为0?
八、答案:
六、1.整式:
9x+4,
,
分式:
,
,
2.x=-1
七、1.18x,
,a+b,
,;
整式:
8x,a+b,
;
分式:
2.X=
3.x=-1
16.1.2分式的基本性质
一、教学目标
.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
.重点:
理解分式的基本性质.
2.难点:
灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.
三、例、习题的意图分析
.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:
约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.P11习题16.1的第5题是:
不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
.请同学们考虑:
与
相等吗?
与
相等吗?
为什么?
2.说出
与
之间变形的过程,
与
之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.
,
,
,
,
。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.
解:
=
,
=,=,
=
,
=。
六、随堂练习
.填空:
=
=
(3)
=
=
2.约分:
(1)
(2)
(3)
(4)
3.通分:
(1)和
(2)和
(3)和
(4)和
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
(3)
七、课后练习
.判断下列约分是否正确:
(1)=
(2)=
(3)=0
2.通分:
(1)和
(2)和
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1)
(2)
八、答案:
六、1.2x
4b(3)bn+n
x+y
2.
(1)
(2)
(3)
(4)-22
3.通分:
(1)=
,
=
(2)=
,
=
(3)=
=
(4)=
=
4.
(3)
16.2分式的运算
6.2.1分式的乘除
一、教学目标:
理解分式乘除法的法则,会进行分式乘除运算.
二、重点、难点
.重点:
会用分式乘除的法则进行运算.
2.难点:
灵活运用分式乘除的法则进行运算.
3.难点与突破方法
分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.
三、例、习题的意图分析
.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.
2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.
3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.
4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此2=a2-2a+1<a2-2+1,即2<a2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)
四、课堂引入
.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.
[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.
.
P14[观察]从上面的算式可以看到分式的乘除法法则.
3.[提问]P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?
类似分数的乘除法法则得到分式的乘除法法则的结论.
五、例题讲解
P14例1.
[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.
P15例2.
[分析]这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.
P15例.
[分析]这道应用题有两问,第一问是:
哪一种小麦的单位面积产量最高?
先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此2=a2-2a+1<a2-2+1,即2<a2-1,可得出“丰收2号”单位面积产量高.
六、随堂练习
计算
(1)
(2)
(3)
(4)-8xy
七、课后练习
计算
(1)
(2)
(3)
(4)
(5)
(6)
八、答案:
六、
(1)ab
(2)
(3)
(4)-20x2
(5)
(6)
七、
(1)
(2)
(3)
(4)
(5)
(6)
16.2.1分式的乘除
一、教学目标:
熟练地进行分式乘除法的混合运算.
二、重点、难点
.重点:
熟练地进行分式乘除法的混合运算.
2.难点:
熟练地进行分式乘除法的混合运算.
3.认知难点与突破方法:
紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.
三、例、习题的意图分析
.P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.
教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.
2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.
四、课堂引入
计算
(1)
五、例题讲解
(P17)例4.计算
[分析]是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.
(补充)例.计算
=
=
(判断运算的符号)
=
(约分到最简分式)
=
=
=
=
六、随堂练习
计算
(2)
(3)
(4)
七、课后练习
计算
八、答案:
六.
(1)
(2)
(3)
(4)-y
七.
(3)
(4)
16.2.1分式的乘除
一、教学目标:
理解分式乘方的运算法则,熟练地进行分式乘方的运算.
二、重点、难点
.重点:
熟练地进行分式乘方的运算.
2.难点:
熟练地进行分式乘、除、乘方的混合运算.
3.认知难点与突破方法
讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算
=
==,=
==,……
顺其自然地推导可得:
=
==,即=.
(n为正整数)
归纳出分式乘方的法则:
分式乘方要把分子、分母分别乘方.
三、例、习题的意图分析
.P17例5第
(1)题是分式的乘方运算,它与整式的乘方一样应先判
断乘方的结果的符号,在分别把分子、分母乘方.第
(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:
先做乘方,再做乘除..
2.教材P17例5中象第
(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第
(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.
分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.
四、课堂引入
计算下列各题:
(1)=
=(
)
=
=(
)
(3)=
=(
)
[提问]由以上计算的结果你能推出(n为正整数)的结果吗?
五、例题讲解
(P17)例5.计算
[分析]第
(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第
(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:
先做乘方,再做乘除.
六、随堂练习
.判断下列各式是否成立,并改正.
(1)=
(2)=
(3)=
(4)=
2.计算
(2)
(3)
(4)
5)
七、课后练习
计算
八、答案:
六、1.
(1)不成立,=
(2)不成立,=
(3)不成立,=
(4)不成立,=
2.
(1)
(2)
(3)
(4)
七、
(3)
(4)
16.2.2分式的加减
(一)
一、教学目标:
(1)熟练地进行同分母的分式加减法的运算.
(2)会把异分母的分式通分,转化成同分母的分式相加减.
二、重点、难点
.重点:
熟练地进行异分母的分式加减法的运算.
2.难点:
熟练地进行异分母的分式加减法的运算.
3.认知难点与突破方法
进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:
(1)取各分母系数的最小公倍数;
(2)所出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.
异分母的分式加减法的一般步骤:
(1)通分,将异分母的分式化成同分母的分式;
(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.
三、例、习题的意图分析
.P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.
3.P20例6计算应用分式的加减法法则.第
(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;
第
(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.
(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1,R2,…,Rn的关系为.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.
四、课堂堂引入
.出示P18问题3、问题4,教师引导学生列出答案.
引语:
从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.
2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?
3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?
4.请同学们说出的最简公分母是什么?
你能说出最简公分母的确定方法吗?
五、例题讲解
(P20)例6.计算
[分析]第
(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第
(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.
(补充)例.计算
(1)
[分析]第
(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.
解:
=
=
=
=
[分析]第
(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.
解:
=
=
=
=
=
六、随堂练习
计算
(2)
(3)
(4)
七、课后练习
计算
八、答案:
四.
(1)
(2)
(3)
(4)1
五.
(3)1
(4)
www.5y
kj.co
m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 下册 全套 上课 学习 教案