数控机床小医生.docx
- 文档编号:25863995
- 上传时间:2023-06-16
- 格式:DOCX
- 页数:12
- 大小:24.04KB
数控机床小医生.docx
《数控机床小医生.docx》由会员分享,可在线阅读,更多相关《数控机床小医生.docx(12页珍藏版)》请在冰豆网上搜索。
数控机床小医生
数控机床故障诊断与维修
1.1数控加工的概念
首先,要知道数控机床一般的故障出现在什么地方或者是如何去解决问题,我们就必须得熟练的了解数控机床的工作原理及特点等相关的一些知识!
这样我们才能在遇到这些问题的时候得心应手。
数控机床的工作原理就是将加工过程所需的各种操作(如主轴变速、工件的松开与夹紧、进刀与退刀、开车与停车、自动关停冷却液)和步骤以及工件的形状尺寸用数字化的代码表示,通过控制介质(如穿孔纸带或磁盘等)将数字信息送入数控装置,数控装置对输入的信息进行处理与运算,发出各种控制信号,控制机床的伺服系统或其他驱动元件,使机床自动加工出所需要的工件。
所以,数控加工的关键是加工数据和工艺参数的获取,即数控编程。
数控加工一般包括以下几个内容:
(1)对图纸进行分析,确定需要数控加工的部分;
(2)利用图形软件(如CAXA制造工程师)对需要数控加工的部分造型;
(3)根据加工条件,选择合适的加工参数,生成加工轨迹(包括粗加工、半精加工、精加工轨迹);
(4)轨迹的仿真检验;
(5)生成G代码;
(6)传给机床加工。
1.2数控机床的特点
(1)具有高度柔性
在数控机床上加工零件,主要取决于加工程序,它与普通机床不同,不必制造、更换许多工具、夹具,不需要经常调整机床。
因此,数控机床适用于零件频繁更换的场合。
也就是适合单件、小批生产及新产品的开发,缩短了生产准备周期,节省了大量工艺设备的费用。
(2)加工精度高
数控机床的加工精度,一般可达到0.005~0.1mm,数控机床是按数字信号形式控制的,数控装置每输出一个脉冲信号,则机床移动部件移动一个脉冲当量(一般为0.001mm),而且机床进给传动链的反向间隙与丝杠螺距平均误差可由数控装置进行补偿,因此,数控机床定位精度比较高。
(3)加工质量稳定、可靠
加工同一批零件,在同一机床,在相同加工条件下,使用相同刀具和加工程序,刀具的走刀轨迹完全相同,零件的一致性好,质量稳定。
(4)生产率高
数控机床可有效地减少零件的加工时间和辅助时间,数控机床的主轴转速和进给量的范围大,允许机床进行大切削量的强力切削,数控机床目前正进入高速加工时代,数控机床移动部件的快速移动和定位及高速切削加工,减少了半成品的工序间周转时间,提高了生产效率。
(5)改善劳动条件
数控机床加工前经调整好后,输入程序并启动,机床就能自动连续的进行加工,直至加工结束。
操作者主要是程序的输入、编辑、装卸零件、刀具准备、加工状态的观测,零件的检验等工作,劳动强度极大降低,机床操作者的劳动趋于智力型工作。
另外,机床一般是封闭式加工,即清洁,又安全。
(6)利于生产管理现代化
数控机床的加工,可预先精确估计加工时间,所使用的刀具、夹具可进行规范化、现代化管理。
数控机床使用数字信号与标准代码为控制信息,易于实现加工信息的标准化,目前已与计算机辅助设计与制造(CAD/CAM)有机地结合起来,是现代集成制造技术的基础。
1.3数控机床使用中应注意的事项
使用数控机床之前,应仔细阅读机床使用说明书以及其他有关资料,以便正确操作使用机床,并注意以下几点:
(1)机床操作、维修人员必须是掌握相应机床专业知识的专业人员或经过技术培训的人员,且必须按安全操作规程及安全操作规定操作机床;
(2)非专业人员不得打开电柜门,打开电柜门前必须确认已经关掉了机床总电源开关。
只有专业维修人员才允许打开电柜门,进行通电检修;
(3)除一些供用户使用并可以改动的参数外,其它系统参数、主轴参数、伺服参数等,用户不能私自修改,否则将给操作者带来设备、工件、人身等伤害;
(4)修改参数后,进行第一次加工时,机床在不装刀具和工件的情况下用机床锁住、单程序段等方式进行试运行,确认机床正常后再使用机床;
(5)机床的PLC程序是机床制造商按机床需要设计的,不需要修改。
不正确的修改,操作机床可能造成机床的损坏,甚至伤害操作者;
(6)建议机床连续运行最多24小时,如果连续运行时间太长会影响电气系统和部分机械器件的寿命,从而会影响机床的精度;
(7)机床全部连接器、接头等,不允许带电拔、插操作,否则将引起严重的后果。
数控机床故障分类
2.1按故障发生的部位分类
⑴主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。
主机常见的故障主要有:
1)因机械部件安装、调试、操作使用不当等原因引起的机械传动故障
2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障
3)因机械零件的损坏、联结不良等原因引起的故障,等等.
主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。
润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。
数控机床的定期维护、保养.控制和根除“三漏”现象发生是减少主机部分故障的重要措施.
⑵电气控制系统故障从所使用的元器件类型上.根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类,
“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。
数控机床的弱电部分包括CNC、PLC、MDI/CRT以及伺服驱动单元、输为输出单元等。
“弱电”故障又有硬件故障与软件故障之分.硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。
软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有.加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。
“强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。
这部分的故障虽然维修、诊断较为方便,但由于它处于高压、大电流工作状态,发生故障的几率要高于“弱电”部分.必须引起维修人员的足够的重视。
2.2按故障的性质分类
⑴确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。
这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便
确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常.但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。
正确的使用与精心维护是杜绝或避免故障发生的重要措施。
⑵随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关.
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
2.3按故障的指示形式分类
⑴有报带显示的故障数控机床的故障显示可分为指示灯显示与显示器显示两种情况:
1)指示灯显示报警指示灯显示报警是指通过控制系统各单元上的状态指示灯(一般由LED发光管或小型指示灯组成)显示的报警.根据数控系统的状态指示灯,即使在显示器故障时,仍可大致分析判断出故障发生的部位与性质,因此.在维修、排除故障过程中应认真检杳这些状态指示灯的状态。
2)显示器显示报警.显示器显示报警是指可以通过CNC显示器显示出报警号和报警信息的报警。
由于数控系统一般都具有较强的自诊断功能,如果系统的诊断软件以及显示电路工作正常,一旦系统出现故障,可以在显示器上以报警号及文本的形式显示故障信息。
数控系统能进行显示的报警少则几十种,多则上千种,它是故障诊断的重要信息。
在显示器显示报警中,又可分为NC的报警和PLC的报等两类。
前者为数控生产厂家设置的故降显示.它可对照系统的“维修手册”,来确定可能产生该故障的原因。
后者是由数控机床生产厂家设置的PLC报警信息文本,属于机床侧的故降显示。
它可对照机床生产厂家所提供的“机床维修手册”中的有关内容.确定故障所产生的原因。
⑵无报警显示的故障这类故障发生时.机床与系统均无报警显示,其分析诊断难度通常较大.需要通过仔细、认真的分析判断才能予以确认。
特别是对于一些早期的数控系统,由于系统本身的诊断功能不强,或无PLC报警信息文本,出现无报警显示的故障情祝则更多.
对于无报警显示故障,通常要具体情况具体分析,根据故障发生前后的变化.进行分析判断,原理分析法与PLC程序分析法是解决无报警显示故障的主要方法.
2.4按故障产生的原因分类
⑴数控机床自身故障这类故障的发生是由于数控机床自身的原因所引起的,与外部使用环境条件无关.数控机床所发生的极大多数故障均属此类故障。
⑵数控机床外部故障这类故障是由于外部原因所造成的。
供电电压过低、过高,波动过大:
电源相序不正确或三相输入电压的不平衡;环境温度过高:
有害气体、潮气、粉尘授入:
外来振动和干扰等都是引起故障的原因。
此外,人为因素也是造成数控机床故障的外部原因之一,据有关资料统计,首次使用数控机床或由不熟练工人来操作数控机床,在使用的第一年,操作不当所造成的外部故障要占机床总故障的三分之一以上。
除上述常见故障分类方法外,还有其他多种不同的分类方法。
如:
按故障发生时有无破坏性.可分为破坏性故障和非破坏性故障两种.按故障发生与需要维修的具体功能部位.可分为数控装置故障,进给伺服系统故障,主轴驱动系统故障,白动换刀系统故障等等,这一分类方法在维修时常用.
数控机床各部故障分析及维修
3.1数控机床主轴伺服系统故障检查及维修
在维修主回路采用错位选触无环流可逆调速驱动系统的数控车床中所遇到的部分故障及处理方法。
①.故障现象:
1.8m卧车在点动时,花盘来回摆动。
检查:
测量驱动控制系统中的±20V直流稳压电源的纹波为4V峰峰值,大大超过了规定的范围。
分析:
在控制系统的放大电路中,高、低通滤波器可以滤掉,如:
测速机反馈,电流反馈,电压反馈中的各次谐波干扰信号,但无法滤除系统本身直流电源电路中的谐波分量,因它存在于整个系统中,这些谐波进入放大器就会使放大器阻塞,使系统产生各种不正常的现象。
在点动状态下,因电机的转速较低,这些谐波已超过了点动时的电压值,造成了系统的振荡,使主轴花盘来回摆动,而且一旦去除谐波信号,故障马上消失。
处理:
将电压板中的100MF和1000MF滤波电容换下焊上新电容,并测量纹波只有几个毫伏后将电源板安装好,开机试运行,故障消除。
②.故障现象:
5m立车在运行加工中发出哐哐声后,烧保险。
检查:
发现5FC5FG、5RG5RQ正反组全无脉冲输出(线路见图2),测量结果,IC7反相器损坏,又发现1FG1FC输出波形较其他波形幅值低得多。
分析:
5m立车主驱动直流电机的驱动电压由晶闸管全控桥反并联整流电路提供。
12路触发脉冲中,有两路消失,另一路触发脉冲的幅值较其它正常触发脉冲要短三分之一,当出现哐哐的齿轮撞击声时,误以为液压马达联轴节处出现了问题,但过了一会儿两路保险丝烧坏,实际上,在这次故障的前一段时间里已烧过两次保险,当时只认为是偶然的电网不稳造成,因换上保险丝后,故障就消除了。
由于5m立车加工运行时的转速较低,虽然可控硅整流电路是桥式整流,但是线路中触发脉冲丢失和幅值小同时存在时,也会造成电流不连续,输出的电压不稳,从而使电机的转速不稳。
一开始出现的哐哐声,实际就是转速不稳的表现。
由于电流断续而引起的烧保险故障能发生在运行后停车和正常运行的任何时刻。
处理:
将放大管T1(另一组触发电路中的放大管,功能如图2中的T7)及反相器IC7换下,故障消除。
3.2机床PLC初始故障的诊断
机床PLC初始故障的诊断为了保护机床和维修方便,PLC有显示和检测机床故障的能力。
一旦发生故障,维修人员就能根据机床的故障显示号去确定故障类别,予以排除。
但在实际加工过程中,我们发现有时PLC同时显示几个故障,它们是由某一个故障引起的连锁故障,排除了初始的引发故障,其它故障报警就消失了。
可是从机床PLC显示的所有报警故障中,维修人员并不知道哪个故障是初始引发故障,维修人员只能逐个故障去查,这就增加了维修难度。
机床PLC初始故障诊断功能,通过PLC程序,准确判断出初始故障的报警号。
维修中,首先排除初始故障,其它引发故障自行消失,这样就极大地方便了机床的维修,提高了机床维修的快速性和准确性。
2初始故障诊断原理设计的PLC程序不单单是把各个故障都能检测和显示出来,还能把最关键的初始故障自动判断出来。
初始故障诊断原理:
以3个故障为例,其中设置了3个故障检测位,分别为R500.0、R510.0、R520.0;3个初始故障检测位为R500.2、R510.2、R520.2;F149.1为系统复位信号。
初始状态时,无报警出现,故障检测位都为“0”,初始故障检测位也都为“0”,复位信号F149.1为“0”。
在3个故障中假设首先发生第二个故障。
在程序扫描的第一个周期内,其对应的故障检测位R510.0变为“1”,R500.2、R520.2、F149.1初始值为“0”,初始故障检测位R510.2变为“1”,通过自锁保持为“1”,直到故障被排除,系统复位信号发出后“1”状态才被解除。
在程序扫描的第二个周期内,R510.2保持为“1”,实现了对R500.1、R520.1的封锁,即使此时另外某一个故障检测位为“1”,也不能导致其初始故障检测位变为“1”。
通过此PLC程序的控制,就能从同时发生的众多故障里准确地判断出初始故障。
在JCS018数控机床中,遇到了多个故障同时发生的问题,如换刀报警和液压报警同时出现。
维修时,先检查液压控制部分,然后才能确认故障出在换刀过程中。
检查后我们才知道换刀的动力由液压驱动来提供。
PLC控制程序设计中,当遇到换刀故障时,为防止更大的意外发生,在报警的同时也断开了液压控制,因此换刀故障发生时出现了两个报警信息。
为遵循原机床的设计思路,而又能准确地发出报警信息,给JCS018数控机床增加了对初始故障的检查功能。
按照前面的程序分析,换刀和液压故障检测位分别为R500.0和R510.0,初始故障可从初始故障检测位R500.2和R510.2读出。
当该机床再发生类似故障时,就能很快地判断出初始故障。
3.3数控设备检测元件故障及维修
检测元件是数控机床伺服系统的重要组成部分,它起着检测各控制轴的位移和速度的作用,它把检测到的信号反馈回去,构成闭环系统。
测量方式可分为直接测量和间接测量:
直接测量就是对机床的直线位移采用直线型检测元件测量,直接测量常用的检测元件一般包括:
直线感应同步器、计量光栅、磁尺激光干涉仪。
间接测量就是对机床的直线位移采用回转型检测元件测量,间接测量常用的检测元件一般包括:
脉冲编码器、旋转变压器、圆感应同步器、圆光栅和圆磁栅。
当机床出现如下故障现象时,应考虑是否是由检测元件的故障引起的:
①.机械振荡(加/减速时):
(1)脉冲编码器出现故障,此时检查速度单元上的反馈线端子电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器。
(2)脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节。
(3)测速发电机出现故障,修复,更换测速机。
②.机械暴走(飞车):
在检查位置控制单元和速度控制单元的情况下,应检查:
(1)脉冲编码器接线是否错误,检查编码器接线是否为正反馈,A相和B相是否接反。
(2)脉冲编码器联轴节是否损坏,更换联轴节。
(3)检查测速发电机端子是否接反和励磁信号线是否接错。
③.主轴不能定向或定向不到位:
在检查定向控制电路设置和调整,检查定向板,主轴控制印刷电路板调整的同时,应检查位置检测器(编码器)是否不良,此时测编码器输出波形。
④.坐标轴振动进给:
在检查电动机线圈是否短路,机械进给丝杠同电机的连接是否良好,检查整个伺服系统是否稳定的情况下,检查脉冲编码是否良好、联轴节联接是否平稳可靠、测速机是否可靠。
检测元件是一种极其精密和容易受损的器件,一定要从下面几个方面注意,进行正确的使用和维护保养。
(1).不能受到强烈振动和摩擦以免损伤代码板,不能受到灰尘油污的污染,以免影响正常信号的输出。
(2).工作环境周围温度不能超标,额定电源电压一定要满足,以便于集成电路片子的正常工作。
(3).要保证反馈线电阻,电容的正常,保证正常信号的传输。
(4).防止外部电源、噪声干扰,要保证屏蔽良好,以免影响反馈信号。
(5).安装方式要正确,如编码器联接轴要同心对正,防止轴超出允许的载重量,以保证其性能的正常。
总之,在数控设备的故障中,检测元件的故障比例是比较高的,只要正确的使用并加强维护保养,对出现的问题进行深入分析,就一定能降低故障率,并能迅速解决故障,保证设备的正常运行。
数控机床的维护
数控系统是数控机床的核心部件,因此,数控机床的维护主要是数控系统的维护。
数控系统经过一段较长时间的使用,电子元器件性能要老化甚至损坏,有些机械部件更是如此,为了尽量地延长元器件的寿命和零部件的磨损周期,防止各种故障,特别是恶性事故的发生,就必须对数控系统进行日常的维护。
概括起来,要注意以下几个方面。
1.制订数控系统日常维护的规章制度
根据各种部件特点,确定各自保养条例。
如明文规定哪些地方需要天天清理(如CNC系统的输入/输出单元——光电阅读机的清洁,检查机械结构部分是否润滑良好等),哪些部件要定期检查或更换(如直流伺服电动机电刷和换向器应每月检查一次)。
2.应尽量少开数控柜和强电柜的门
因为在机加工车间的空气中一般都含有油雾、灰尘甚至金属粉末。
一旦它们落在数控系统内的印制线路或电器件上,容易引起元器件间绝缘电阻下降,甚至导致元器件及印制线路的损坏。
有的用户在夏天为了使数控系统超负荷长期工作,打开数控柜的门来散热,这是种绝不可取的方法,最终会导致数控系统的加速损坏。
正确的方法是降低数控系统的外部环境温度。
因此,应该有一种严格的规定,除非进行必要的调整和维修,不允许随便开启柜门,更不允许在使用时敞开柜门。
3.定时清扫数控柜的散热通风系统
应每天检查数控系统柜上各个冷却风扇工作是否正常,应视工作环境状况,每半年或每季度检查一次风道过滤器是否有堵塞现象。
如果过滤网上灰尘积聚过多,需及时清理,否则将会引起数控系统柜内温度高(一般不允许超过55℃),造成过热报警或数控系统工作不可靠。
4.经常监视数控系统用的电网电压
FANUC公司生产的数控系统,允许电网电压在额定值的85%~110%的范围内波动。
如果超出此范围,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件损坏。
5.定期更换存储器用电池
FANUC公司所生产的数控系统内的存储器有两种:
(1)不需电池保持的磁泡存储器。
(2)需要用电池保持的CMOSRAM器件,为了在数控系统不通电期间能保持存储的内容,内部设有可充电电池维持电路,在数控系统通电时,由+5V电源经一个二极管向CMOSRAM供电,并对可充电电池进行充电;当数控系统切断电源时,则改为由电池供电来维持CMOSRAM内的信息,在一般情况下,即使电池尚未失效,也应每年更换一次电池,以便确保系统能正常工作。
另外,一定要注意,电池的更换应在数控系统供电状态下进行。
6.数控系统长期不用时的维护
为提高数控系统的利用率和减少数控系统的故障,数控机床应满负荷使用,而不要长期闲置不用,由于某种原因,造成数控系统长期闲置不用时,为了避免数控系统损坏,需注意以下两点:
(1)要经常给数控系统通电,特别是在环境湿度较大的梅雨季节更应如此,在机床锁住不动的情况下(即伺服电动机不转时),让数控系统空运行。
利用电器元件本身的发热来驱散数控系统内的潮气,保证电子器件性能稳定可靠,实践证明,在空气湿度较大的地区,经常通电是降低故障率的一个有效措施。
(2)数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,应将电刷从直流电动机中取出,以免由于化学腐蚀作用,使换向器表面腐蚀,造成换向性能变坏,甚至使整台电动机损坏。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数控机床 医生