扫描电镜技术及其在材料科学中的应用.docx
- 文档编号:25839349
- 上传时间:2023-06-16
- 格式:DOCX
- 页数:14
- 大小:649.76KB
扫描电镜技术及其在材料科学中的应用.docx
《扫描电镜技术及其在材料科学中的应用.docx》由会员分享,可在线阅读,更多相关《扫描电镜技术及其在材料科学中的应用.docx(14页珍藏版)》请在冰豆网上搜索。
扫描电镜技术及其在材料科学中的应用
扫描电镜在材料分析中的应用
摘要:
随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。
细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。
目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。
电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。
本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。
关键词:
电子显微镜;扫描电镜;材料;应用
引言:
自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。
扫描电镜已成为各种科学领域和工业部门广泛应用的有力工具。
从地学、生物学、医学、冶金、机械加工、材料、半导体制造、陶瓷品的检验等均大量应用扫描电镜作为研究手段。
在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。
利用扫描电镜可以直接研究晶体缺陷及其生产过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。
1.扫描电镜的原理
扫描电镜(ScanningElectronMicroscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。
扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。
电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。
入射电子与试样相互作用产生图2所示的信息种类[1-4]。
这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。
图1扫描电子显微镜的工作原理图2电子束探针照射试样产生的各种信息
扫描电子显微镜(SEM)中的各种信号及其功能如表1所示
表1扫描电镜中主要信号及其功能
2.扫描电镜的构成
图3给出了电镜的电子光学部分的剖面图。
主要包括以下几个部分:
1.电子枪——产生和加速电子。
由灯丝系统和加速管两部分组成
2.照明系统——聚集电子使之成为有一定强度的电子束。
由两级聚光镜组合而成。
3.样品室——样品台,交换,倾斜和移动样品的装置。
4.成像系统——像的形成和放大。
由物镜、中间镜和投影镜组成的三级放大系统。
调节物镜电流可改变样品成像的离焦量。
调节中间镜电流可以改变整个系统的放大倍数。
5.观察室——观察像的空间,由荧光屏组成。
6.照相室——记录像的地方。
7.除了上述的电子光学部分外,还有电气系统和真空系统。
提供电镜的各种电压、电流及完成控制功能[3]。
图3电镜的电子光学部分剖面图
3.样品的制备
试样制备技术在电子显微术中占有重要的地位,它直接关系到电子显微图像的观察效果和对图像的正确解释。
如果制备不出适合电镜特定观察条件的试样,即使仪器性能再好也不会得到好的观察效果。
扫描电镜的有关制样技术是以透射电镜、光学显微镜及电子探针X射线显微分析制样技术为基础发展起来的,有些方面还兼具透射电镜制样技术,所用设备也基本相同。
但因扫描电镜有其本身的特点和观察条件,只简单地引用已有的制样方法是不够的。
扫描电镜的特点是:
1.观察试样为不同大小的固体(块状、薄膜、颗粒),并可在真空中直接进行观察。
2.试样应具有良好的导电性能,不导电的试样,其表面一般需要蒸涂一层金属导电膜。
3.试样表面一般起伏(凹凸)较大。
4.观察方式不同,制样方法有明显区别。
5.试样制备与加速电压、电子束流、扫描速度(方式)等观察条件的选择有密切关系。
上述项目中对试样导电性要求是最重要的条件。
在进行扫描电镜观察时,如试样表面不导电或导电性不好,将产生电荷积累和放电,使得入射电子束偏离正常路径,最终造成图像不清晰乃至无法观察和照相。
以导电性块状材料为例(导电性材料主要是指金属,一些矿物和半导体材料也具有一定的导电性),介绍制备的具体过程。
这类材料的试样制备最为简单。
只要使试样大小不得超过仪器规定(如试样直径最大为φ25mm,最厚不超过20mm等),然后用双面胶带粘在载物盘,再用导电银浆连通试样与载物盘(以确保导电良好),等银浆干了(一般用台灯近距离照射10分钟,如果银浆没干透的话,在蒸金抽真空时将会不断挥发出气体,使得抽真空过程变慢)之后就可放到扫描电镜中直接进行观察。
但在制备试样过程中,还应注意:
1.为减轻仪器污染和保持良好的真空,试样尺寸要尽可能小些。
2.切取试样时,要避免因受热引起试样的塑性变形,或在观察面生成氧化层。
要防止机械损伤或引进水、油污及尘埃等污染物。
3.观察表面,特别是各种断口间隙处存在污染物时,要用无水乙醇、丙酮或超声波清洗法清理干净。
这些污染物都是掩盖图像细节,引起试样荷电及图像质量变坏的原因。
4.故障构件断口或电器触点处存在的油污、氧化层及腐蚀产物,不要轻易清除。
观察这些物质,往往对分析故障产生的原因是有益的。
如确信这些异物是故障后才引入的,一般可用塑料胶带或醋酸纤维素薄膜粘贴几次,再用有机溶剂冲洗即可除去。
5.试样表面的氧化层一般难以去除,必要时可通过化学方法或阴极电解方法使试样表面基本恢复原始状态。
4.样品的测试与分析
测试与分析是扫描电镜技术中最重要环节之一,测试出我们想要的图像并做出分析总结是扫描电镜工作的目的。
扫描电镜的测试步骤主要分为:
1.电子束合轴:
调整电子束对中(合轴)的方法有机械式和电磁式。
①机械式是调整合轴螺钉
②电磁式则是调整电磁对中线圈的电流,以此移动电子束相对光路中心位置达到合轴目的
2.放入试样:
将试样固定在试样盘上,并进行导电处理,使试样处于导电状态。
将试样盘装入样品更换室,预抽三分钟,然后将样品更换室阀门打开,将试样盘放在样品台上,在抽出试样盘的拉杆后关闭隔离阀。
3.高压选择:
扫描电镜的分辨率随加速电压增大而提高,但其衬度随电压增大反而降低,并且加速电压过高污染严重,所以一般在20kV下进行初步观察,而后根据不同的目的选择不同的电压值。
4.聚光镜电流的选择:
聚光镜电流与像质量有很大关系,聚光镜电流越大,放大倍数越高。
同时,聚光镜电流越大,电子束斑越小,相应的分辨率也会越高。
5.光阑选择:
光阑孔一般是400μ、300μ、200μ、100μ四档,光阑孔径越小,景深越大,分辨率也越高,但电子束流会减小。
一般在二次电子像观察中选用300μ或200μ的光阑。
6.聚焦与像散校正:
聚焦分粗调、细调两步。
由于扫描电镜景深大、焦距长,所以一般采用高于观察倍数二、三档进行聚焦,然后再回过来进行观察和照像。
即所谓“高倍聚焦,低倍观察”。
像散校正主要是调整消像散器,使其电子束轴对称直至图像不飘移为止。
4.亮度与对比度的选择:
二次电子像的对比度受试样表面形貌凸凹不平而引起二次电子发射数量不同的影响。
反差与亮度的选择则是当试样凸凹严重时,衬度可选择小一些,以达明亮对比清楚,使暗区的细节也能观察清楚。
也可以选择适当的倾斜角,以达最佳的反差。
当所以参数都调节到合适样品观察的位置时即可观测,并拍照储存用于日后的分析工作。
5.扫描电镜在材料科学中的应用
扫描电镜结合上述各种附件,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等。
5.1.材料的组织形貌观察
材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在金属断口(图4)和显微组织三维形态(图5)的观察研究方面获得了广泛地应用。
图4SEM观察环氧树脂断口图图5SEM观察集成电路芯片结构图
5.1.1观察材料的表面形貌
图6热轧态Mg侧剥离面SEM形貌
热轧包铝镁板(轧制温度400℃、压下率45%)Mg侧剥离面SEM形貌如图6所示。
由图可清楚的观察到在剥离面上存在大量撕裂棱、撕裂平台,在撕裂平台上还存在许多放射状小条纹和韧窝。
5.1.2观察材料第二相
图7AZ31镁合金SEM高倍显微组织
从图7中可以清楚的观察到破碎后的第二相Mg17Al12尺寸约为4µm,在“大块”Mg17Al12附近有许多弥散分布的的小颗粒,尺寸在0.5µm左右,此为热轧后冷却过程中由α-Mg基过饱和固溶体中析出的二次Mg17Al12相,呈这种形态分布的细小第二相Mg17Al12能有效的阻碍位错运动,提高材料强度,起到弥散强化的作用,而不会明显降低AZ31镁合金的塑性。
5.1.3观察材料界面
图8Mg/Al轧制界面线扫描[1]
图8是Mg/Al轧制复合界面的线扫描图像,从图中我们可以看到,穿过Mg和Al的界面进行线扫描,可以得到,在Al的一侧,Mg含量低,在Mg一侧,Al几乎为零;但在界面处,Mg和Al各大约占一半,说明在界面处发生了扩散,形成了Mg和Al的扩散层。
5.1.4观察材料断口
(a)铸态(b)热轧态
图9AZ31镁合金拉伸断口形貌
AZ31镁合金铸态试样拉伸断口SEM扫描形貌如图所示。
从图9(a)可以观察到明显的解理断裂平台,在最后撕裂处也存在少量韧窝,基本上属于准解理断裂,塑性较差。
这是因为铸态AZ31镁合金晶界处存在粗大的脆性第2相Mg17Al12,在拉伸变形过程中容易破碎形成裂纹源。
热轧态AZ31镁合金拉伸试样断口处有明显的缩颈现象,其宏观断口SEM扫描形貌如图9(b)所示,呈现出以韧窝为主的延性断口形貌特征,韧窝大小为5~20
µm。
5.2镀层表面形貌分析和深度检测
有时为利于机械加工,在工序之间也进行镀膜处理由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难,而扫描电镜却可以很容易完成使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。
5.3微区化学成分分析
在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析为此,相继出现了扫描电子显微镜—电子探针多种分析功能的组合型仪器。
扫描电子显微镜如配有X射线能谱(EDS)和X射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息材料。
内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定扫描电镜可以提供重要的线索和数据工程材料失效分析常用的电子探针的基本工作方式为:
(1)对样品表面选定微区作定点的全谱扫描定性;
(2)电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;
(3)电子束在样品表面作面扫描,以特定元素的射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像。
一般而言,常用的X射线能谱仪能检测到的成分含量下限为0.1%(质量分数)可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面。
5.4显微组织及超微尺寸材料的研究
钢铁材料中诸如回火托氏体、下贝氏体等显微组织非常细密,用光学显微镜难以观察组织的细节和特征在进行材料、工艺试验时,如果出现这类组织,可以将制备好的金相试样深腐蚀后,在扫描电镜中鉴别下贝氏体与高碳马氏体组织在光学显微镜下的形态均呈针状,且前者的性能优于后者。
但由于光学显微镜的分辨率较低,无法显示其组织细节,故不能区分电子显微镜却可以通过对针状组织细节的观察实现对这种相似组织的鉴别在电子显微镜下(SEM),可清楚地观察到针叶下贝氏体是有铁素体和其内呈方向分布的碳化物组成。
6.现代扫描电镜的发展
近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。
但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。
随着材料科学的发展特别是半导体工业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。
早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。
其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词
“环扫”,即环境扫描电镜。
6.1低电压扫描电镜
在扫描电镜中,低电压是指电子束流加速电压在1kV左右。
此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边缘效应更加显著,能够适应半导体和非导体分析工作的需要。
但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。
6.2低真空扫描电镜
低真空为是为了解决不导电试样分析的另一种工作模式。
其关键技术是采用了一级压差光栏,实现了两级真空。
发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,一般用1个机械泵和扩散泵来满足之。
而样品室不一定要太高的真空,可用另一个机械泵来实现样品室的低真空状态。
当聚焦的电子束进入低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象,从而实现了对非导体样品自然状态的直接观察,在半导体、冶金、化工、矿产、陶瓷、生物等材料的分析工作方面有着比较突出的作用。
6.3环境扫描电镜(ESEM)
上述低真空扫描电镜样品室最高低真空压力为400Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到2600Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的周围环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。
环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。
它是使用1个分子泵和2个机械泵,2个压差(压力限制)光栅将主体分成3个抽气区,镜筒处于高真空,样品周围为环境状态,样品室和镜筒之间存在一个缓冲过渡状态。
使用时,高真空、低真空和环境3个模式可根据情况任意选择,并且在3种情况下都配有二次电子探测器,都能达到3.5nm的二次电子图像分辨率。
ESEM的特点是:
(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;
(2)可保证样品在100%湿度下观察,即可进行含油含水样品的观察,能够观察液体在样品表面的蒸发和凝结以及化学腐蚀行为;
(3)可进行样品热模拟及力学模拟的动态化实验研究,也可以研究微注入液体与样品的相互作用等。
因为这些过程中有大量气体释放,只能在环扫状态下进行观察。
环境扫描电镜技术拓展了电子显微学的研究领域,是扫描电子显微镜领域的一次重大技术革命,是研究材料热模拟、力学模拟、氧化腐蚀等过程的有力工具,受到了国内广大科研工作者的广泛关注,具有广阔的应用前景。
7.结论
扫描电子显微镜在材料的分析和研究方面应用十分广泛,主要应用于材料断口分析、微区成分分析、各种镀膜表面形貌分析、层厚测量和显微组织形貌及纳米材料分析等。
随着材料科学和高科技的迅速发展,这样也迫使检测技术水平不断提高。
目前,高温样品台、动态拉伸台、能谱仪和扫描电镜的组合,这样扫描电镜在得到较好的试样形貌像的前提下,同时得到成分信息和晶体学的信息,使得扫描电镜必将在材料工艺研究和品种开发等方面发挥更大的作用。
参考文献:
[1]朱琳.扫描电子显微镜及其在材料科学中的应用[J].吉林化工学院学报,2007,
(2):
81-84.
[2]吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用[J].武钢技术,2005,43(6):
36-40.
[3]刘维.电子显微镜的原理和应用[J].现代仪器使用与维修,1996,
(1):
9-12.
[4]刘剑霜,谢锋等.扫描电子显微镜[J].上海计量测试,2003,(6):
37-39.
[5]干蜀毅.常规扫描电子显微镜的特点与发展[J].分析仪器,2000,
(1):
34-36.
[6]李占双,景晓燕.近代分析测试技术[M].哈尔滨:
哈尔滨工程大学出版社,2005,158-192.
(注:
可编辑下载,若有不当之处,请指正,谢谢!
)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扫描电镜 技术 及其 材料科学 中的 应用