材料科学基础知识点总结(目录).doc
- 文档编号:258027
- 上传时间:2022-10-07
- 格式:DOC
- 页数:31
- 大小:2MB
材料科学基础知识点总结(目录).doc
《材料科学基础知识点总结(目录).doc》由会员分享,可在线阅读,更多相关《材料科学基础知识点总结(目录).doc(31页珍藏版)》请在冰豆网上搜索。
金属学与热处理总结目录
第一部分 2
一、金属的晶体结构 2
二、纯金属的结晶 3
三、二元合金的相结构与结晶 4
四、铁碳合金 5
奥氏体与铁素体的异同点 5
二次渗碳体与共析渗碳体的异同点 5
六、金属及合金的塑性变形与断裂 5
塑性变形的方式:
以滑移和孪晶为主 6
七、金属及合金的回复与再结晶 6
变形金属加热时显微组织的变化、性能的变化 6
再结晶 6
热加工的主要作用(或目的)是 6
影响再结晶的主要因素 6
塑性变形后的金属随加热温度的升高会发生的一些变化 7
八、扩散 7
柯肯达尔效应 7
影响扩散的因素 7
扩散第一定律表达式 7
九、钢的热处理原理 7
热处理 8
转变产物(P、B、M)的特征、性能特点 8
第二部分 8
一、论述四种强化的强化机理、强化规律及强化方法 8
1.形变强化 8
2.固溶强化 9
3、第二相强化 10
4、细晶强化 11
二、改善塑性和韧性的机理 11
三、Fe—Fe3C相图,结晶过程分析及计算 12
1. 分析含碳0.53~0.77%的铁碳合金的结晶过程 12
4. 计算室温下过共析钢(含碳量为)的组织组成物的相对量 14
6. 计算含碳3.0%铁碳合金室温下组织组成物及相组成物 14
7. 相图中共有几种渗碳体?
说出各自的来源及形态 15
8. 计算室温下含碳量为合金相组成物的相对量 15
14. 说出奥氏体与铁素体的异同点 16
举例说明成分、组织与机械性能之间的关系 16
说明三个恒温转变,画出转变特征图 17
四、晶面指数与晶向指数 17
五、固态下互不溶解的三元共晶相图的投影图如图所示 19
六、固态下互不溶解的三元共晶相图的投影图如图所示。
20
七、锻造或轧制的作用是什么?
为什么锻造或轧制的温度选择在高温的奥氏体区 21
八、什么是柯肯达尔效应?
如何解释柯肯达尔效应?
22
九、影响扩散的因素有哪些?
22
十、写出扩散第一定律的数学表达式,说出各符号的意义。
22
十一、写出扩散系数的数学表达式,说出各符号的意义及影响因素 23
十二、固态金属扩散的条件是什么?
23
十三、为什么晶体的滑移通常在密排晶面并沿密排晶向进行?
23
十四、晶界具有哪些特性?
24
十五、简述位错与塑性、强度之间的关系 24
十六、论述钢的渗碳通常在奥氏体区(930~950℃)进行,而且时间较长的原因 24
十七、与滑移相比孪晶有什么特点 25
十八、影响再结晶的主要因素有哪些 25
十九、论述间隙原子、置换原子、位错、晶界对材料力学性能的影响。
26
二十、什么是再结晶温度?
影响再结晶温度的因素有哪些 26
二十一、塑性变形后的金属随加热温度的升高会发生的一些变化 26
二十二、什么是晶面间距?
计算低指数晶面的晶面间距 27
二十三、什么是过冷度?
为什么金属结晶一定要有过冷度?
27
二十四、简述铸锭三个晶区的形成机理。
28
二十五、影响置换固溶体溶解度的因素有哪些?
28
二十七、固溶体与金属化合物有何异同点?
28
三十一、计算体心立与面心立方方结构滑移面的原子密度及滑移方向上的线密度。
29
第一部分
一、金属的晶体结构
重点内容:
面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:
密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。
晶体的特征、晶体中的空间点阵。
晶格类型
fcc(A1)
bcc(A2)
hcp(A3)
间隙类型
正四面体
正八面体
四面体
扁八面体
四面体
正八面体
间隙个数
8
4
12
6
12
6
原子半径rA
间隙半径rB
晶胞:
在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:
失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:
晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:
①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:
①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶
重点内容:
均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:
结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:
液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:
理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:
在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:
液态金属结晶的过程是形核与晶核的长大过程。
从热力学的角度上看,没有过冷度结晶就没有趋动力。
根据可知当过冷度为零时临界晶核半径Rk为无穷大,临界形核功()也为无穷大。
临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
细化晶粒的方法:
增加过冷度、变质处理、振动与搅拌。
铸锭三个晶区的形成机理:
表面细晶区:
当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。
柱状晶区:
在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。
垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。
中心等轴晶区:
随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。
由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。
三、二元合金的相结构与结晶
重点内容:
杠杆定律、相律及应用。
基本内容:
相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。
合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。
相律:
f=c–p+1其中,f为自由度数,c为组元数,p为相数。
伪共晶:
在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶
组织,这种共晶组织称为伪共晶。
合金:
两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。
合金相:
在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。
四、铁碳合金
重点内容:
铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。
基本内容:
铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。
钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。
奥氏体与铁素体的异同点:
相同点:
都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。
不同点:
铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。
二次渗碳体与共析渗碳体的异同点。
相同点:
都是渗碳体,成份、结构、性能都相同。
不同点:
来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。
成分、组织与机械性能之间的关系:
如亚共析钢。
亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。
随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。
所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降
六、金属及合金的塑性变形与断裂
重点内容:
体心与面心结构的滑移系;金属塑性变形后的组织与性能。
基本内容:
固溶体强化机理与强化规律、第二相的强化机理。
霍尔——配奇关系式;单晶体塑性变形的方式、滑移的本质。
塑性变形的方式:
以滑移和孪晶为主。
滑移:
晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。
滑移的本质是位错的移动。
体心结构的滑移系个数为12,滑移面:
{110},方向<111>。
面心结构的滑移系个数为12,滑移面:
{111},方向<110>。
金属塑性变形后的组织与性能:
显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。
亚结构细化,出现形变织构。
性能:
材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。
七、金属及合金的回复与再结晶
重点内容:
金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化。
基本内容:
回复、再结的概念、变形金属加热时储存能的变化。
再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。
变形金属加热时显微组织的变化、性能的变化:
随温度的升高,金属的硬度和强度下降,塑性和韧性提高。
电阻率不断下降,密度升高。
金属的抗腐蚀能力提高,内应力下降。
再结晶:
冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。
热加工的主要作用(或目的)是:
①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。
使材料的性能得到明显的改善。
影响再结晶的主要因素:
①再结晶退火温度:
退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:
一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:
原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。
塑性变形后的金属随加热温度的升高会发生的一些变化:
显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。
八、扩散
重点内容:
影响扩散的因素;扩散第一定律表达式。
基本内容:
扩散激活能、扩散的驱动力。
柯肯达尔效应,扩散第二定律表达式。
柯肯达尔效应:
由置换互溶原子因相对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料科学 基础 知识点 总结 目录