人教版小学数学四年级下册《加法和乘法交换律》教学设计.docx
- 文档编号:25772371
- 上传时间:2023-06-13
- 格式:DOCX
- 页数:12
- 大小:21.06KB
人教版小学数学四年级下册《加法和乘法交换律》教学设计.docx
《人教版小学数学四年级下册《加法和乘法交换律》教学设计.docx》由会员分享,可在线阅读,更多相关《人教版小学数学四年级下册《加法和乘法交换律》教学设计.docx(12页珍藏版)》请在冰豆网上搜索。
人教版小学数学四年级下册《加法和乘法交换律》教学设计
人教版小学数学四年级下册《加法和乘法交换律》教学设计
《加法、乘法交换律》教学设计教学内容:
义务教育课程标准实验教科书小学数学四年级(下册)第三单元运算定律与及简便运算加法、乘法交换律教学目标:
1、让学生经历探索加法、乘法交换律的过程,理解并掌握加法和乘法交换律,初步感受通过猜想验证(举正例、找反例、分析道理等方法)结论,掌握加法、乘法交换律的探究过程。
2、在探索加法和乘法交换律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
注重孩子们善于发现和提高归纳和概括能力。
3、让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。
4、在孩子们掌握加法和乘法交换律的基础上,利用新旧知识的联系,明确交换律已在原来的学习中渗透。
注重知识运用的练习和拓展,更好发挥运算定律的作用。
教学设想:
在课前通过一个小故事,当看到一种现象或情景时,调动学生善于思考问题,深入全面的概括,归纳和总结,从而用严密的语言叙述。
训练孩子们在数学的学习中,认真地思考和加强思维训练是很关键的。
在教学中利用小毛驴驮物的故事导入,孩子们兴趣浓,配有图片能直观形象的展现出小毛驴驮的两包不同大小的东西,不管怎么交换它们的位置,两包大小不同的东西的总重量没有发生变化,两幅图片展示,更便于发现和对比。
在这种现象中孩子自然会联想一些这样的例子,生活和数学中的,引出在加法算式中也存在这种现象。
通过几个例子确实发现在加法算式中存在这种现象,通过几个例子我们还不能足以得出结论,我们可以暂时把这种现象作为一种猜想,有了猜想我们就应该进行验证,在验证中我们利用举正例、找反例和分析道理等方法多层次多角度的去进行验证说明,都能很准确的得出我们的猜想是正确的。
教学中注重和加强了对加法中为什么交换两个加数的位置和不变进行深入得辨析和理解,从而我们就能得出一个结论。
在学习中让孩子们对这种学习思路和方法进行梳理并掌握。
在利用这种教学思路得出加法交换律的同时,让孩子们很自然地去思考、联想和变换,从而得出新的猜想:
减法、乘法和除法中是否也存有交换律。
在前面掌握这种验证方法的同时,进一步利用这种方法来对同学们提出的猜想进行验证,较熟练的得出在减法和除法中不存在交换律,在乘法中,交换两个因数的位置,积不变。
在进行乘法交换律验证的过程中,注重和加强了对乘法中为什么存在交换律进行深入得辨析和理解,从而我们对运算定律进行初步的总结和概括:
加法和乘法中有交换律。
为了便于记忆和运用,我们还可以用字母公式来表示。
在掌握了加法和乘法交换律的同时,通过一定的练习和运用,巩固和拓展。
进一步领悟到在有些题目的计算中运用运算定律能使计算简便,使计算更方便和灵活。
教具准备:
课件,四种猜想的内容。
教学重点:
猜想、验证、总结加法和乘法交换律,理解和掌握加法和乘法交换律。
教学难点:
在验证过程中举正例、找反例和分析道理的层次性,验证思路和方法的训练。
课前交流:
教师给学生介绍了如下故事:
三位学者由伦敦去苏格兰参加会议,越过边境不久,发现了一只黑羊。
真有意思,一位学者说:
苏格兰的羊都是黑的。
师:
同学们,你们觉得这位学者说得对不对?
为什么?
不对吧。
另一位学者说,我们只能得出这样的结论:
在苏格兰有一些羊是黑色的。
师:
同学们说这位学者说的怎么样?
数学家马上接着说:
我觉得下面的结论可能更准确,那就是:
在苏格兰,至少有一个地方,有至少一只羊,它是黑色的。
师:
你们认为数学家说得怎么样呢?
(数学家概括问题很严密。
我们同学在以后学习过程中,不论是表述问题还是进行分析问题,都要做到严密、规范、准确,这样对我们的学习数学有很大的帮助。
)设计意图:
通过故事引起学生学习兴趣。
当看到一种现象时,引发学生去思考,在不同学者的语言叙述中得出,数学家语言最严密,概括最准确,从而使我们在学习过程中从小就应该树立一种严谨认真的学习态度,养成善于发现、归纳和概括问题的好习惯。
教学过程:
一、故事导入:
1、古时候,有一个人赶着小毛驴,驮着两包东西去赶集,他把大包的东西放在前面,把小包的东西放在后面让小毛驴驮着。
走了一段时间,他发现小毛驴累得冒出了汗,这个人非常心疼,心想,这么大包的东西放在前面小毛驴肯定很累,该怎么办呢?
忽然,他灵机一动,说:
有了!
只见他把小包的东西放在了前面,把大包的东西换到了后面,然后高兴得拍着手说:
这下可好了,小包的东西在前面,小毛驴一定不再觉着累了。
听了这个小毛驴驮物的故事,你们有什么想法?
2、在我们的数学学习中有没有这种现象呢?
谁能举几个例子?
结合学生发言,教师板书:
算式:
如:
7+8=8+7设计意图:
这个故事既激发了学生学习的兴趣又为新知识的学习做了很好的铺垫。
在设计的过程中先通过小毛驴驮物中两个大小包东西的位置交换,引发学生去思考,两个大小包东西的位置了变化,但他们的总重量没有发生变化。
通过这种现象结合引导回归到数学中的现象,自然得出数学加法算式中也存在这种现象。
为后面的提出猜想起到很好的预设作用。
二、发现、验证规律:
1、教师指着这几组算式,师:
观察这几组等式,它们有什么特点?
生:
左右两边的加数是一样的。
师:
他们什么变了,什么没变?
生:
他们的位置变了,但得数没变。
(师板书:
两个加数交换位置和不变)2、师:
是不是这仅仅是个巧合呢?
就像第一位学者说黑羊一样?
(策略1:
引起学生的争论,学生可能会提供更多的例子,借机指导学生必须经过计算后才能画等号。
正例的讨论不宜过多,三至五个足矣。
)教师适时引导:
能不能找到不符合的例子?
就像故事中说的,把所有的羊都找齐了看看是什么颜色的不容易,但只要找到一只白羊或不是黑色的羊就说明第一位学者说的是错的,我们能不能找的一个反例来证明这句话是错的呢?
3、也就是交换两个加数位置和变了?
(给学生思考和交流的时间)。
(学生举不出反例)4、师:
是我们时间太少还没有找到反例呢,还是就不可能存在反例呢?
为什么?
(策略2:
引导得出:
加法的意义就是把两部分合起来,求一共是多少,与这两部分的前后顺序无关,就像小毛驴驮东西的道理一样。
)5、师:
这样看来,我们能验证刚才的猜想吗?
生:
能。
(策略3:
教师重新将?
改成。
,并补充成为:
在加法中,交换两个加数的位置和不变。
)6、师:
回顾刚才的学习,除了得到这一结论外,你还有什么其它收获?
师小结:
我们从一个生活现象中联想到数学中有没有这种类似的情况呢?
通过举例观察,我们提出了一个大胆而合理的猜想,然后又通过举正例、找反例、分析原因等方法最终得出结论:
我们的猜想是正确的!
其实数学家进行研究时,也会经历这样的过程。
(学生交流后,教师揭示加法交换律,并板书:
交换律加法中)7、用语言表述加法交换律比较麻烦,大家想一想怎样能(用数学的方法)把这一规律表示得既简单有清楚呢?
(用字母表示可以做到这一点)如果用字母a和字母b分别表示两个加数,怎样表示这个结论呢?
(指名学生回答,板书a+b=b+a)说明:
a和b可以表示0、1、2、3、中的任意一个数,用a+b=b+a就可以表示任意两个数相加,交换加数的位置,和不变,比如a+b=b+a可以表示2+1=1+2、137+357=357+137、18+17=17+18等等。
8、师:
在这一规律中,变化的是两个加数的――(板书:
变)生:
位置。
师:
但不变的是――生:
它们的和。
(板书:
不变)师:
原来,变和不变有时也能这样巧妙地结合在一起。
设计意图:
在通过现象得出一种猜想的同时,我们就要进行有效的验证:
通过举正例,找反例,分析原因等方法,使我们猜想得到验证,在验证的过程中我们进一步深入的探讨了在加法中为什么交换两个加数的位置和不变。
从而使我们得出的结论才更有说服力,同时培养了孩子们得出结论的一种思路和方法。
注重环环相扣,思路清晰,巧妙引导,归纳概括。
三、拓展延伸:
1、师:
从个别特例中形成猜想,并举例验证,是一种获取结论的方法。
但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。
比如(教师指读刚才的结论,加法的加字予以重音),在加法中,交换两个加数的位置和不变。
那么,在生:
减法中,交换两个数的位置,差会不会也不变呢?
(学生中随即有人作出回应,不可能,差肯定会变。
)2、师:
不急于发表意见。
这是他通过联想给出的猜想。
(教师随即出示:
猜想一:
减法中,交换两个数的位置差不变?
)生1:
同样,乘法中,交换两个数的位置积会不会也不变?
(教师随即出示:
猜想二:
乘法中,交换两个因数的位置积不变?
)生2:
除法中,交换两个数的位置商会不变吗?
(教师随即出示:
猜想三:
除法中,交换两个数的位置商不变?
)3、师:
通过联想,同学们由加法拓展到了减法、乘法和除法,这是一种很有价值的思考。
下面就请大家像刚才验证加法那样,想办法验证这些猜想否正确,可独立思考,也可相互交流。
汇报交流:
生:
我举了两个例子,结果发现8-6=2,但6-8却不够减;3/5-1/5=2/5,但1/5-3/5却不够减。
所以我认为,减法中交换两个数的位置差会变的,也就是减法中没有交换律。
4、师:
根据他举的例子,你们觉得他得出的结论有道理吗?
生:
有。
5、师:
但老师举的例子中,交换两数位置,差明明没变嘛。
你看:
3-3=0,交换两数的位置后,3-3还是得0;还有,14-14=14-14,100-100=100-100,这样的例子多着呢。
生1:
我反对,老师您举的例子都很特殊,如果被减数和减数不一样,那就不行了。
生2:
我还有补充,我只举了一个例子,2-11-2,我就没有继续往下再举例。
师:
哪又是为什么呢?
生3:
因为我觉得,只要有一个例子不符合猜想,那猜想肯就错了。
6、师:
关于其它几个猜想,你们又有怎样的发现?
生:
我来说乘法。
通过举例,我发现乘法中交换两个因数的位置积也不变。
7、师:
能给大家说说你是怎么证明的吗?
生:
我首先举了几个正例,发现都符合,没有找到反例。
所以我们认为在乘法中也有交换律。
师:
大家同意他的结论吗?
为什么在乘法中也存在这个规律呢?
你们考虑过吗?
(策略4:
生讨论,教师可适时画图加以讲解演示。
)在原来我们学习乘法时,35和53表示的意义相同,表示3个5或5个3是多少?
如:
(1)每行有5个五星,共3行,一共有多少个?
(2)每行有3个五星,共5行,一共有多少个?
所以:
35=538、通过图形,能更深入的理解乘法的意义,在把握乘法意义的基础上,进一步掌握两个算式只是交换因数的位置,积不变。
所以我们不仅要仔细认真地观察现象,还应深入地思考为什么,有根有据的来分析证明。
(板书:
乘法中,交换两个因数的位置积不变。
)9、用字母公式能表示吗?
(板书:
ab=ba)10、除法呢?
我们刚才通过同学们的猜想和验证(举正例,找反例,分析原因等)方法,也就是只要能找出一个反例,我们的猜想就不正确,从而使我们得出结论。
通过我们同学们的证明,在加法和乘法中有交换律,在减法和除法没有交换律。
设计意图:
在探索和掌握了加法交换律的同时,让孩子们在联想、变换的同时进一步得出新的猜想:
减法中、乘法中、除法中,两个数的位置交换,其结果是否发生变化。
在前一环节对加法交换律验证方法运用的基础上,能很快地对同学们提出的的猜想进行验证,验证的方法得到巩固和熟练。
对孩子们提出:
乘法中,两个因数交换位置积不变。
进行有理有据的说明,起到了灵活运用数学思想的作用。
对加法和乘法交换律的学习起到注重融合,自然过渡,水到渠成的效果。
四、交换律应用:
1、想一想,在我们原来的学习中已经应用过加法的交换律了?
加法的交换律其实在我们原来的学习中已经潜意识在应用,比如:
一道加法题38+456,我们计算完后,要想验算这道题,我们除了用减法外还可以用-----交换两个加数的位置验算啊!
2、师:
加法怎么验算呢?
生:
交换两个加数的位置再算一遍就行。
3、师:
为什么呢?
生:
两个数相加,与他们的顺序无关,他们的和不变。
4、填空:
(1)53+44=()+53
(2)甲数乙数=乙数()(3)a+45=()+()(4)88()=999()5、下面各等式哪些符合加法或乘法交换律?
符合的画。
(1)76+24=80+20()
(2)184+302=302+184()(3)56165=16556()(4)520=250()6、拓展练习1:
(下面各等式哪些符合加法或乘法交换律?
符合的画。
)
(1)31+67+19=31+19+67()
(2)a+35+b=c+35+d()(3)12578=12587()7、拓展练习2:
(填空)
(1)+220+b=+()+220
(2)58+366+142=()+()+366(3)25174=()()17教师引导学生选择完成教材中的部分习题,从正、反两面巩固对加法、乘法交换律的理解,并借助实际问题,沟通交换律与以往算法多样化之间的联系。
设计意图:
在练习中,对我们学习过知识进行梳理。
在原来的学习中,加法和乘法的交换律已经得到了运用。
如:
加法和乘法的验算我们采用交换两个加数或因数的位置进行,其实就是运用的加法和乘法交换律。
在练习中对题目注重运用和联系,充分发挥加法和乘法交换律在计算中作用,能使计算更灵活和简便,知识的衔接和拓展对新知识掌握起到很好的巩固和提高作用。
七、回顾总结:
师:
通过今天的学习,同学们有什么收获吗?
生:
在我们刚刚接触和认识一个问题时,可以大胆的提出自己的猜想,然后通过自己和同学们认真地验证(举正例,找反例,分析道理等方法),一定能很好对所学得知识进行归纳和总结。
板书设计:
交换律猜想在加法中,交换两个加数的位置和不变。
a+b=b+a验证(正例、反例、分析道理)在乘法中,交换两个因数的位置积不变。
35=53结论ab=ba8+7=7+821+23=23+21
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 加法和乘法交换律 人教版 小学 数学四 年级 下册 加法 乘法 交换 教学 设计