认识无理数 公开课教案.docx
- 文档编号:25671071
- 上传时间:2023-06-11
- 格式:DOCX
- 页数:16
- 大小:94.45KB
认识无理数 公开课教案.docx
《认识无理数 公开课教案.docx》由会员分享,可在线阅读,更多相关《认识无理数 公开课教案.docx(16页珍藏版)》请在冰豆网上搜索。
认识无理数公开课教案
第二章实数
2.1认识无理数
第一环节:
质疑
内容:
【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:
作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.
效果:
为后续环节的进行起了很好的铺垫的作用
第二环节:
课题引入
内容:
1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长
的平方,并提出问题:
是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:
选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.
效果:
巧设问题背景,顺利引入本节课题.
第三环节:
获取新知
内容:
【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】:
已知
,请问:
①
可能是整数吗?
②
可能是分数吗?
【释一释】:
释1.满足
的
为什么不是整数?
释2.满足
的
为什么不是分数?
【忆一忆】:
让学生回顾“有理数”概念,既然
不是整数也不是分数,那么
一定不是有理数,这表明:
有理数不够用了,为“新数”(无理数)的学习奠定了基础
【找一找】:
在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
目的:
创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣
效果:
学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.
第四环节:
应用与巩固
内容:
【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:
在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段2.长度不是有理数的线段
【画一画2】:
在右2的正方形网格中画出四个三角形(右1)
2.三边长都是有理数2.只有两边长是有理数
3.只有一边长是有理数4.三边长都不是有理数
【仿一仿】:
例:
在数轴上表示满足
的
解:
(右2)
仿:
在数轴上表示满足
的
【赛一赛】:
右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?
试试看!
(右3)
目的:
进一步感受“新数”的存在,而且能把“新数”表示在数轴上
效果:
加深了对“新知”的理解,巩固了本课所学知识.
第五环节:
课堂小结
内容:
1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的:
引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:
学生总结、相互补充,学会进行概括总结.
第六环节:
布置作业
习题2.1
教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?
从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:
“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:
“新数”不能表示成分数,为无理数的教学奠好基.4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?
你知道乙播种机参与播种的天数是多少呢?
学习了本节的内容,你就知道了.
二、合作探究
探究点一:
确定正比例函数的表达式
求正比例函数y=(m-4)m2-15的表达式.
解析:
本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:
由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:
利用正比例函数的定义确定表达式:
自变量的指数为1,系数不为0.
探究点二:
确定一次函数的表达式
【类型一】根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:
先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.
解:
设一次函数的表达式为y=kx+b,根据题意得,
∴
解得
∴一次函数的表达式为y=-5x+5.
方法总结:
“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.
解析:
根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.
解:
设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=
,即正比例函数的表达式为y=
x.∵OA=
=5,且OA=2OB,∴OB=
.∵点B在y轴的负半轴上,∴B点的坐标为(0,-
).又∵点B在一次函数y2=k2x+b的图象上,∴-
=b,代入3=4k2+b中,得k2=
.∴一次函数的表达式为y2=
x-
.
方法总结:
根据图象确定一次函数的表达式的方法:
从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
数量x/千克
售价y/元
1
8+0.4
2
16+0.8
3
24+1.2
4
32+1.6
5
40+2.0
…
…
解析:
从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:
由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:
解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.
2.2 平方根
第1课时 算术平方根
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.根据算术平方根的概念求出非负数的算术平方根;(重点)
3.了解算术平方根的性质.(难点)
一、情境导入
上一节课我们做过:
由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?
二、合作探究
探究点一:
算术平方根的概念
【类型一】求一个数的算术平方根
求下列各数的算术平方根:
(1)64;
(2)2
;(3)0.36;(4)
.
解析:
根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.
解:
(1)∵82=64,∴64的算术平方根是8;
(2)∵(
)2=
=2
,∴2
的算术平方根是
;
(3)∵0.62=0.36,∴0.36的算术平方根是0.6;
(4)∵
=
,又92=81,∴
=9,而32=9,∴
的算术平方根是3.
方法总结:
(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求
与81的算术平方根的不同意义,不要被表面现象迷惑.
(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
【类型二】利用算术平方根的定义求值
3+a的算术平方根是5,求a的值.
解析:
先根据算术平方根的定义,求出3+a的值,再求a.
解:
因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22.
方法总结:
已知一个数的算术平方根,可以根据平方运算来解题.
探究点二:
算术平方根的性质
【类型一】含算术平方根式子的运算
计算:
+
-
.
解析:
首先根据算术平方根的定义进行开方运算,再进行加减运算.
解:
+
-
=7+5-15=-3.
方法总结:
解题时容易出现如
=
+
的错误.
【类型二】算术平方根的非负性
已知x,y为有理数,且
+3(y-2)2=0,求x-y的值.
解析:
算术平方根和完全平方式都具有非负性,即
≥0,a2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案.
解:
由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.
方法总结:
算术平方根、绝对值和完全平方式都具有非负性,即
≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.
三、板书设计
算术平方根
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:
讲清概念,加强训练,逐步深化.
4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?
你知道乙播种机参与播种的天数是多少呢?
学习了本节的内容,你就知道了.
二、合作探究
探究点一:
确定正比例函数的表达式
求正比例函数y=(m-4)m2-15的表达式.
解析:
本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:
由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:
利用正比例函数的定义确定表达式:
自变量的指数为1,系数不为0.
探究点二:
确定一次函数的表达式
【类型一】根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:
先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.
解:
设一次函数的表达式为y=kx+b,根据题意得,
∴
解得
∴一次函数的表达式为y=-5x+5.
方法总结:
“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.
解析:
根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.
解:
设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=
,即正比例函数的表达式为y=
x.∵OA=
=5,且OA=2OB,∴OB=
.∵点B在y轴的负半轴上,∴B点的坐标为(0,-
).又∵点B在一次函数y2=k2x+b的图象上,∴-
=b,代入3=4k2+b中,得k2=
.∴一次函数的表达式为y2=
x-
.
方法总结:
根据图象确定一次函数的表达式的方法:
从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
数量x/千克
售价y/元
1
8+0.4
2
16+0.8
3
24+1.2
4
32+1.6
5
40+2.0
…
…
解析:
从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:
由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:
解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 认识无理数 公开课教案 认识 无理数 公开 教案