Monte Carlo method.docx
- 文档编号:25560340
- 上传时间:2023-06-09
- 格式:DOCX
- 页数:16
- 大小:270.59KB
Monte Carlo method.docx
《Monte Carlo method.docx》由会员分享,可在线阅读,更多相关《Monte Carlo method.docx(16页珍藏版)》请在冰豆网上搜索。
MonteCarlomethod
MonteCarlomethod
FromWikipedia,thefreeencyclopedia
Jumpto:
navigation,search
NottobeconfusedwithMonteCarloalgorithm.
Computationalphysics
Numericalanalysis ·Simulation
Dataanalysis ·Visualization
Potentials[show]
Fluiddynamics[show]
MonteCarlomethods[show]
Particle[show]
Scientists[show]
∙v
∙t
∙e
MonteCarlomethods(orMonteCarloexperiments)areaclassofcomputationalalgorithmsthatrelyonrepeatedrandomsamplingtocomputetheirresults.MonteCarlomethodsareoftenusedincomputersimulationsofphysicalandmathematicalsystems.Thesemethodsaremostsuitedtocalculationbyacomputerandtendtobeusedwhenitisinfeasibletocomputeanexactresultwithadeterministicalgorithm.[1]Thismethodisalsousedtocomplementtheoreticalderivations.
MonteCarlomethodsareespeciallyusefulforsimulatingsystemswithmanycoupleddegreesoffreedom,suchasfluids,disorderedmaterials,stronglycoupledsolids,andcellularstructures(seecellularPottsmodel).Theyareusedtomodelphenomenawithsignificantuncertaintyininputs,suchasthecalculationofriskinbusiness.Theyarewidelyusedinmathematics,forexampletoevaluatemultidimensionaldefiniteintegralswithcomplicatedboundaryconditions.WhenMonteCarlosimulationshavebeenappliedinspaceexplorationandoilexploration,theirpredictionsoffailures,costoverrunsandscheduleoverrunsareroutinelybetterthanhumanintuitionoralternative"soft"methods.[2]
TheMonteCarlomethodwascoinedinthe1940sbyJohnvonNeumann,StanislawUlamandNicholasMetropolis,whiletheywereworkingonnuclearweaponprojects(ManhattanProject)intheLosAlamosNationalLaboratory.ItwasnamedaftertheMonteCarloCasino,afamouscasinowhereUlam'suncleoftengambledawayhismoney.[3]
Contents
∙1Introduction
∙2History
∙3Definitions
o3.1MonteCarloandrandomnumbers
o3.2MonteCarlosimulationversus"whatif"scenarios
∙4Applications
o4.1Physicalsciences
o4.2Engineering
o4.3Computationalbiology
o4.4ComputerGraphics
o4.5Appliedstatistics
o4.6Games
o4.7Designandvisuals
o4.8Financeandbusiness
o4.9Telecommunications
∙5Useinmathematics
o5.1Integration
o5.2Simulation-Optimization
o5.3Inverseproblems
o5.4Computationalmathematics
∙6Seealso
∙7Notes
∙8References
∙9Externallinks
Introduction
MonteCarlomethodappliedtoapproximatingthevalueofπ.Afterplacing30000randompoints,theestimateforπiswithin0.07%oftheactualvalue.Thishappenswithanapproximateprobabilityof20%.
MonteCarlomethodsvary,buttendtofollowaparticularpattern:
1.Defineadomainofpossibleinputs.
2.Generateinputsrandomlyfromaprobabilitydistributionoverthedomain.
3.Performadeterministiccomputationontheinputs.
4.Aggregatetheresults.
Forexample,consideracircleinscribedinaunitsquare.Giventhatthecircleandthesquarehavearatioofareasthatisπ/4,thevalueofπcanbeapproximatedusingaMonteCarlomethod:
[4]
1.Drawasquareontheground,theninscribeacirclewithinit.
2.Uniformlyscattersomeobjectsofuniformsize(grainsofriceorsand)overthesquare.
3.Countthenumberofobjectsinsidethecircleandthetotalnumberofobjects.
4.Theratioofthetwocountsisanestimateoftheratioofthetwoareas,whichisπ/4.Multiplytheresultby4toestimateπ.
Inthisprocedurethedomainofinputsisthesquarethatcircumscribesourcircle.Wegeneraterandominputsbyscatteringgrainsoverthesquarethenperformacomputationoneachinput(testwhetheritfallswithinthecircle).Finally,weaggregatetheresultstoobtainourfinalresult,theapproximationofπ.
Ifgrainsarepurposefullydroppedintoonlythecenterofthecircle,theyarenotuniformlydistributed,soourapproximationispoor.Second,thereshouldbealargenumberofinputs.Theapproximationisgenerallypoorifonlyafewgrainsarerandomlydroppedintothewholesquare.Onaverage,theapproximationimprovesasmoregrainsaredropped.
History
BeforetheMonteCarlomethodwasdeveloped,simulationstestedapreviouslyunderstooddeterministicproblemandstatisticalsamplingwasusedtoestimateuncertaintiesinthesimulations.MonteCarlosimulationsinvertthisapproach,solvingdeterministicproblemsusingaprobabilisticanalog(seeSimulatedannealing).
AnearlyvariantoftheMonteCarlomethodcanbeseenintheBuffon'sneedleexperiment,inwhichπcanbeestimatedbydroppingneedlesonafloormadeofparallelstripsofwood.Inthe1930s,EnricoFermifirstexperimentedwiththeMonteCarlomethodwhilestudyingneutrondiffusion,butdidnotpublishanythingonit.[3]
In1946,physicistsatLosAlamosScientificLaboratorywereinvestigatingradiationshieldingandthedistancethatneutronswouldlikelytravelthroughvariousmaterials.Despitehavingmostofthenecessarydata,suchastheaveragedistanceaneutronwouldtravelinasubstancebeforeitcollidedwithanatomicnucleus,andhowmuchenergytheneutronwaslikelytogiveofffollowingacollision,theLosAlamosphysicistswereunabletosolvetheproblemusingconventional,deterministicmathematicalmethods.StanisławUlamhadtheideaofusingrandomexperiments.Herecountshisinspirationasfollows:
ThefirstthoughtsandattemptsImadetopractice[theMonteCarloMethod]weresuggestedbyaquestionwhichoccurredtomein1946asIwasconvalescingfromanillnessandplayingsolitaires.ThequestionwaswhatarethechancesthataCanfieldsolitairelaidoutwith52cardswillcomeoutsuccessfully?
Afterspendingalotoftimetryingtoestimatethembypurecombinatorialcalculations,Iwonderedwhetheramorepracticalmethodthan"abstractthinking"mightnotbetolayitoutsayonehundredtimesandsimplyobserveandcountthenumberofsuccessfulplays.Thiswasalreadypossibletoenvisagewiththebeginningoftheneweraoffastcomputers,andIimmediatelythoughtofproblemsofneutrondiffusionandotherquestionsofmathematicalphysics,andmoregenerallyhowtochangeprocessesdescribedbycertaindifferentialequationsintoanequivalentforminterpretableasasuccessionofrandomoperations.Later[in1946],IdescribedtheideatoJohnvonNeumann,andwebegantoplanactualcalculations.
–StanisławUlam[5]
Beingsecret,theworkofvonNeumannandUlamrequiredacodename.VonNeumannchosethenameMonteCarlo.ThenamereferstotheMonteCarloCasinoinMonacowhereUlam'sunclewouldborrowmoneytogamble.[1][6][7]Usinglistsof"truly"randomrandomnumberswasextremelyslow,butvonNeumanndevelopedawaytocalculatepseudorandomnumbers,usingthemiddle-squaremethod.Thoughthismethodhasbeencriticizedascrude,vonNeumannwasawareofthis:
hejustifieditasbeingfasterthananyothermethodathisdisposal,andalsonotedthatwhenitwentawryitdidsoobviously,unlikemethodsthatcouldbesubtlyincorrect.
MonteCarlomethodswerecentraltothesimulationsrequiredfortheManhattanProject,thoughseverelylimitedbythecomputationaltoolsatthetime.Inthe1950stheywereusedatLosAlamosforearlyworkrelatingtothedevelopmentofthehydrogenbomb,andbecamepopularizedinthefieldsofphysics,physicalchemistry,andoperationsresearch.TheRandCorporationandtheU.S.AirForceweretwoofthemajororganizationsresponsibleforfundinganddisseminatinginformationonMonteCarlomethodsduringthistime,andtheybegantofindawideapplicationinmanydifferentfields.
UsesofMonteCarlomethodsrequirelargeamountsofrandomnumbers,anditwastheirusethatspurredthedevelopmentofpseudorandomnumbergenerators,whichwerefarquickertousethanthetablesofrandomnumbersthathadbeenpreviouslyusedforstatisticalsampling.
Definitions
ThereisnoconsensusonhowMonteCarloshouldbedefined.Forexample,Ripley[8]definesmostprobabilisticmodelingasstochasticsimulation,withMonteCarlobeingreservedforMonteCarlointegrationandMonteCarlostatisticaltests.Sawilowsky[9]distinguishesbetweenasimulation,aMonteCarlomethod,andaMonteCarlosimulation:
asimulationisafictitiousrepresentationofreality,aMonteCarlomethodisatechniquethatcanbeusedtosolveamathematicalorstatisticalproblem,andaMonteCarlosimulationusesrepeatedsamplingtodeterminethepropertiesofsomephenomenon(orbehavior).Examples:
∙Simulation:
Drawingonepseudo-randomuniformvariablefromtheinterval(0,1]canbeusedtosimulatethetossingofacoin:
Ifthevalueislessthanorequalto0.50designatetheoutcomeasheads,butifthevalueisgreaterthan0.50designatetheoutcomeastails.Thisisasimulation,butnotaMonteCarlosimulation.
∙MonteCarlomethod:
Theareaofanirregularfigureinscribedinaunitsquarecanbedeterminedbythrowingdartsatthesquareandcomputingtheratioofhitswithintheirregularfiguretothetotalnumberofdartsthrown.ThisisaMonteCarlomethodofdeterminingarea,butnotasimulation.
∙MonteCarlosimulation:
Drawingalargenumberofpseudo-randomuniformvariablesfromtheinterval(0,1],andassigningvalueslessthanorequalto0.50asheadsandgreaterthan0.50astails,isaMonteCarlosimulationofthebehaviorofrepeatedlytossingacoin.
KalosandWhitlock[4]pointoutthatsuchdistinctionsarenotalwayseasytomaintain.Forexample,theemissionofradiationfromatomsisanaturalstochasticprocess.Itcanbesimulateddirectly,oritsaveragebehaviorcanbedescribedbystochasticequationsthatcanthemselvesbesolvedusingMonteCarlomethods."Indeed,thesamecomputercodecanbeviewedsimultaneouslyasa'naturalsimulation'ora
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Monte Carlo method