Lingo求解物流配送中心选址问题.docx
- 文档编号:25451377
- 上传时间:2023-06-08
- 格式:DOCX
- 页数:14
- 大小:177.51KB
Lingo求解物流配送中心选址问题.docx
《Lingo求解物流配送中心选址问题.docx》由会员分享,可在线阅读,更多相关《Lingo求解物流配送中心选址问题.docx(14页珍藏版)》请在冰豆网上搜索。
Lingo求解物流配送中心选址问题
优化与统计建模试验
专业
学号:
姓名:
2015年5月24日
摘要
在优化与系统建模试验这门课程当中,我们学习了Lingo,Cplex这两种优化软件以及SPSS,R语言这两种统计软件,并且简单了解了如何进行优化求解,学会了如何对数据进行简单分析。
本文运用了Lingo软件,对物流配送中心选址问题进行求解;采用优化软件Cplex对运输问题进行了求解,最后是使用了SPSS软件,对我国城镇居民消费进行统计分析。
关键词:
Lingo;Cplex;SPSS
一、Lingo求解物流配送中心选址问题
设有4个备选物流配送中心地址,6个工厂为其供货,6个客户需要产品,最多设置3个物流配送中心,工厂到物流配送中心的运输价格见表1,物流配送中心到客户的运输价格见表2,工厂的总生产能力见表3,物流配送中心的固定成本、单位管理成本,及容量见表4,客户的需求量见表5
表1工厂到配送中心的运输价格
配送中心
单位运价
工厂
w1
w2
w3
w4
p1
6
5
4
2
p2
2
3
4
9
p3
6
8
7
5
p4
7
4
2
3
p5
4
2
5
1
p6
3
4
1
7
表2配送中心到客户的运输价格
客户
单位运价
配送中心
c1
c2
c3
c4
c5
c6
w1
3
2
7
4
7
5
w2
6
1
4
2
5
3
w3
2
4
5
3
6
8
w4
5
6
3
7
4
6
表3工厂的总生产能力
工厂
p1
p2
p3
p4
p5
p6
总生产能力(p)
40,000
50,000
60,000
70,000
60,000
40,000
表4备选物流配送中心的固定成本,单位管理成本,容量
物流配送中心
w1
w2
w3
w4
固定成本(f)
500,000
300,000
400,000
400,000
单位管理成本(g)
3
2
5
4
仓库容量(a)
10,000
60,000
70,000
50,000
表5客户的需求量
顾客
c1
c2
c3
c4
c5
c6
需求(d)
10,000
20,000
10,000
20,000
30,000
10,000
利用Lingo软件求解以上混合整数规划,编程如下:
model:
sets:
factory/p1。
。
p6/:
p;
warhouse/w1。
.w4/:
a,f,g;
customer/c1。
.c6/:
d;
tr/tr1.。
tr4/:
z;
link1(factory,warhouse):
c,w;
link2(warhouse,customer):
h,x;
endsets
data:
p=40000,50000,60000,70000,60000,40000;
a=70000,60000,70000,50000;
f=500000,300000,400000,400000;
g=3,2,5,4;
d=10000,20000,10000,20000,30000,10000;
c=6542
2349
6875
7423
4251
3417;
h=327475
614253
245368
563746;
enddata
min=@sum(link1(k,i):
c(k,i)*w(k,i))+@sum(link2(i,j):
h(i,j)*x(i,j))
+@sum(link1(k,i):
g(i)*w(k,i))+@sum(warhouse(i):
f(i)*z(i));
@for(factory(k):
@sum(link1(k,i):
w(k,i))<=p(k));
@for(warhouse(i):
@sum(link2(i,j):
x(i,j))=@sum(link1(k,i):
w(k,i)));
@for(customer(j):
@sum(link2(i,j):
x(i,j))>=d(j));
@for(warhouse(i):
@sum(link1(k,i):
w(k,i))〈=(a(i)*z(i)));
@sum(tr(i):
z(i))〈=3;
@for(tr(i):
@bin(z));
end
直接按Lingo求解按钮,就可以得到以上问题的解,部分结果如下:
Globaloptimalsolutionfound.
Objectivevalue:
1480000。
Objectivebound:
1480000。
Infeasibilities:
0。
000000
Extendedsolversteps:
7
Totalsolveriterations:
44
ModelClass:
MILP
Totalvariables:
52
Nonlinearvariables:
0
Integervariables:
4
Totalconstraints:
22
Nonlinearconstraints:
0
Totalnonzeros:
180
Nonlinearnonzeros:
0
从以上结果中可以得到,选择2号和4号备选地址作为物流配送中心地址,最小物流成本为1480。
二、Cplex求解运输问题
某公司经销甲产品.它下设三个加工厂。
每日的产量分别是:
A1为7吨,A2为4吨,A3为9吨。
该公司把这些产品分别运往四个销售点。
各销售点每日销量为:
B1为3吨,B2为6吨,B3为5吨,B4为6吨.已知从各工厂到各销售点的单位产品运价如下表6,问该公司应如何调运产品,在满足各销点的需要量的前提下,使总运费最少.
表6产销平衡表
B1
B2
B3
B4
产量
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量
3
6
5
6
目标函数:
约束条件:
利用CPLEX软件对上述问题进行求解,编程如下:
{string}SCities=。
..;
{string}DCities=..。
;
floatSupply[SCities]=。
.。
;
floatDemand[DCities]=。
.。
;
assert
sum(oinSCities)Supply[o]==sum(dinDCities)Demand[d];
floatCost[SCities][DCities]=..。
;
dvarfloat+Trans[SCities][DCities];
minimize
sum(oinSCities,dinDCities)
Cost[o][d]*Trans[o][d];
subjectto{
forall(oinSCities)
ctSupply:
sum(dinDCities)
Trans[o][d]==Supply[o];
forall(dinDCities)
ctDemand:
sum(oinSCities)
Trans[o][d]==Demand[d];
}
Cplex问题数据文件编码:
SCities={A1A2A3};
DCities={B1B2B3B4};
Supply=#[A1:
7A2:
4A3:
9]#;
Demand=#[B1:
3B2:
6B3:
5B4:
6]#;
Cost=#[A1:
#[B1:
3B2:
11B3:
3B4:
10]#
A2:
#[B1:
1B2:
9B3:
2B4:
8]#
A3:
#[B1:
7B2:
4B3:
10B4:
5]#]#;
运行Cplex得到如下结果:
//solution(optimal)withobjective85
//QualityTherearenoboundinfeasibilities.
//Therearenoreduced-costinfeasibilities。
//MaximumAx-bresidual=0
//Maximumc—B’piresidual=0
//Maximum|x|=9
//Maximum|pi|=11
//Maximum|red-cost|=1
//Conditionnumberofunscaledbasis=9。
0e+000
//
Trans=[[0052]
[3001]
[0603]];
根据以上解答结果,得到最佳的运输方案如表7所示:
表7运输方案
B1
B2
B3
B4
A1
5
2
A2
3
1
A3
6
3
故表中的解为最优解,这时得到的总费用最小为85元。
三、SPSS对我国城镇居民消费进行统计分析
下图是出自《中国统计年鉴—2009》这一资料性年刊,它系统收录了全国和各省、自治区、直辖市2008年经济、社会各方面的统计数据,以及近三十年和其他重要历史年份的全国主要统计数据。
此年鉴正文内容分为24个篇章,本文选取其中的第九篇章—人民生活,用以探究我国城镇居民消费结构及其趋势。
表8城镇居民家庭基本情况
项目
1990
1995
2000
2007
2008
调查户数(户)
35660
35520
42220
59305
64675
平均每户家庭人口(人)
3。
5
3.23
3.13
2。
91
2.91
平均每户就业人口(人)
1.98
1。
87
1。
68
1。
54
1.48
平均每人全部年收入(元)
1516。
21
4279。
02
6295。
91
14908.61
17067。
78
工薪收入
1149.70
3390。
21
4480.50
10234.76
11298.96
经营净收入
22。
50
72。
62
246。
24
940。
72
1453.57
财产性收入
15。
60
90.43
128。
38
348。
53
387.02
转移性收入
328。
41
725。
76
1440.78
3384.6
3928.23
可支配收入
1510.16
4282。
95
6279。
98
13785。
81
15780.76
平均每人消费性支出(元)
1278。
89
3537.57
4998.00
9997.47
11242.85
食品
693。
77
1771.99
1971.32
3628.03
4259。
81
衣着
693.77
1771。
99
1971。
31
3628.03
4259。
81
居住
170。
90
479.20
500。
46
1042。
00
1165.91
家庭设备用品及服务
108.45
263.36
374。
49
601。
80
691.83
医疗保健
25。
67
110.11
318.07
699.09
786。
20
交通通信
40。
51
183.22
426.95
1357.41
1417.12
教育文化娱乐服务
112。
26
331。
01
669。
58
1329。
16
1358。
26
杂项商品与服务
66。
57
114.92
171.83
357.70
418。
31
图1给出了基本的描述性统计图,图中显示各个变量的全部观测量的Mean(均值)、Std.Deviation(标准差)和观测值总数N。
图2给出了相关系数矩阵表,其中显示3个自变量两两间的Pearson相关系数,以及关于相关关系等于零的假设的单尾显著性检验概率。
图1描述性统计表
图2相关系数矩阵
从表中看到因变量家庭设备用品及服务与自变量食品、衣着之间相关关系数依次为0。
869、0.684,反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系。
说明食品与衣着对于家庭设备用品及服务条件的好转有显著的作用。
自变量居住于因变量家庭设备用品及服务之间的相关系数为—0.894,它于其他几个自变量之间的相关系数也都为负,说明它们之间的线性关系不显著。
此外,食品与衣着之间的相关系数为0.950,这也说明它们之间存在较为显著的相关关系.按照常识,它们之间的线性相关关系也是符合事实的.
图3给出了回归系数表和变量显著性检验的T值,我们发现,变量居住的T值太小,没有达到显著性水平,因此我们要将这个变量剔除,从这里我们也可以看出,模型虽然通过了设定检验,但很有可能不能通过变量的显著性检验。
图3回归系数表
图4给出了模型整体拟合效果的概述,模型的拟合优度系数为0.982,反映了因变量于自变量之间具有高度显著的线性关系。
表里还显示了R平方以及经调整的R值估计标准误差,另外表中还给出了杜宾-瓦特森检验值DW=2。
634,杜宾—瓦特森检验统计量DW是一个用于检验一阶变量自回归形式的序列相关问题的统计量,DW在数值2到4之间的附近说明模型变量无序列相关。
图4模型概述表
图5给出了方差分析表,我们可以看到模型的设定检验F统计量的值为9。
214,显著性水平的P值为0.237。
图5方差分析表
图6给出了残差分析表,表中显示了预测值、残差、标准化预测值、标准化残差的最小值、最大值、均值、标准差及样本容量等,根据概率的3西格玛原则,标准化残差的绝对值最大为1.618,小于3,说明样本数据中没有奇异值.
图6残差统计表
图7给出了模型的直方图,由于我们在模型中始终假设残差服从正态分布,因此我们可以从这张图中直观地看出回归后的实际残差是否符合我们的假设,从回归残差的直方图于附于图上的正态分布曲线相比较,可以认为残差的分布不是明显地服从正态分布。
尽管这样也不能盲目的否定残差服从正态分布的假设,因为我们用了进行分析的样本太小,样本容量仅为5。
图7残差分布直方图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Lingo 求解 物流配送 中心 选址 问题