北师大版九年级上册数学 第2章一元二次方程检测题 试题.docx
- 文档编号:25385223
- 上传时间:2023-06-07
- 格式:DOCX
- 页数:23
- 大小:220.34KB
北师大版九年级上册数学 第2章一元二次方程检测题 试题.docx
《北师大版九年级上册数学 第2章一元二次方程检测题 试题.docx》由会员分享,可在线阅读,更多相关《北师大版九年级上册数学 第2章一元二次方程检测题 试题.docx(23页珍藏版)》请在冰豆网上搜索。
北师大版九年级上册数学第2章一元二次方程检测题试题
北师大新版九年级上册《第2章一元二次方程》2015年单元测试卷
一、精心选一选,相信自己的判断!
(每小题3分,共30分)
1.方程2x2﹣3=0的一次项系数是()
A.﹣3B.2C.0D.3
2.方程x2=2x的解是()
A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=
3.方程x2﹣4=0的根是()
A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=4
4.若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()
A.﹣1B.0C.1D.2
5.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()
A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9
6.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()
A.x2+130x﹣1400=0B.x2+65x﹣350=0
C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0
7.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()
A.6B.8C.10D.12
8.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()
A.12B.12或15C.15D.不能确定
9.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是()
A.1B.1或﹣1C.﹣1D.2
10.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.
A.12B.12或66C.15D.33
二、耐心填一填:
(把答案填放相应的空格里.每小题3分,共15分).
11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:
__________.
12.﹣1是方程x2+bx﹣5=0的一个根,则b=__________,另一个根是__________.
13.方程(2y+1)(2y﹣3)=0的根是__________.
14.已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=__________.
15.用换元法解方程
+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是__________.
三、按要求解一元二次方程:
16.按要求解一元二次方程
(1)4x2﹣8x+1=0(配方法)
(2)7x(5x+2)=6(5x+2)(因式分解法)
(3)3x2+5(2x+1)=0(公式法)
(4)x2﹣2x﹣8=0.
四、细心做一做:
20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的总长为35m,求鸡场的长与宽各为多少?
21.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?
22.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
23.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?
这时每月应进多少件衬衫?
24.如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.
(1)经过几秒△PCQ的面积为△ACB的面积的
?
(2)经过几秒,△PCQ与△ACB相似?
(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?
若有可能,求出运动的时间;若没有可能,请说明理由.
北师大新版九年级上册《第2章一元二次方程》2015年单元测试卷
一、精心选一选,相信自己的判断!
(每小题3分,共30分)
1.方程2x2﹣3=0的一次项系数是()
A.﹣3B.2C.0D.3
【考点】一元二次方程的一般形式.
【分析】一元二次方程的一般形式是:
ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【解答】解:
方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.
【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.
2.方程x2=2x的解是()
A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=
【考点】解一元二次方程-因式分解法;因式分解-提公因式法.
【专题】因式分解.
【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.
【解答】解:
x2﹣2x=0
x(x﹣2)=0
∴x1=0,x2=2.
故选C.
【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.
3.方程x2﹣4=0的根是()
A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=4
【考点】解一元二次方程-直接开平方法.
【分析】先移项,然后利用数的开方解答.
【解答】解:
移项得x2=4,开方得x=±2,
∴x1=2,x2=﹣2.
故选C.
【点评】
(1)用直接开方法求一元二次方程的解的类型有:
x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:
要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;
(2)运用整体思想,会把被开方数看成整体;
(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
4.若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()
A.﹣1B.0C.1D.2
【考点】根的判别式;一元二次方程的定义.
【分析】先把方程变形为关于x的一元二次方程的一般形式:
(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.
【解答】解:
方程变形为:
(2k﹣1)x2﹣8x+6=0,
当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,
解得k>
,则满足条件的最小整数k为2.
故选D.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
5.用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()
A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9
【考点】解一元二次方程-配方法.
【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.
【解答】解:
移项得:
x2﹣4x=5,
配方得:
x2﹣4x+22=5+22,
(x﹣2)2=9,
故选D.
【点评】本题考查了解一元二次方程,关键是能正确配方.
6.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()
A.x2+130x﹣1400=0B.x2+65x﹣350=0
C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0
【考点】由实际问题抽象出一元二次方程.
【专题】几何图形问题.
【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.
【解答】解:
依题意得:
(80+2x)(50+2x)=5400,
即4000+260x+4x2=5400,
化简为:
4x2+260x﹣1400=0,
即x2+65x﹣350=0.
故选:
B.
【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.
7.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()
A.6B.8C.10D.12
【考点】勾股定理.
【分析】设这三边长分别为x,x+1,x+2,根据勾股定理可得出(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.
【解答】解:
设这三边长分别为x,x+1,x+2,
根据勾股定理得:
(x+2)2=(x+1)2+x2
解得:
x=﹣1(不合题意舍去),或x=3,
∴x+1=4,x+2=5,
则三边长是3,4,5,
∴三角形的面积=
××4=6;
故选:
A.
【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.
8.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()
A.12B.12或15C.15D.不能确定
【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.
【专题】分类讨论.
【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.
【解答】解:
解方程x2﹣9x+18=0,得x1=6,x2=3
∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系
∴等腰三角形的腰为6,底为3
∴周长为6+6+3=15
故选C.
【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.
9.若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值范围是()
A.1B.1或﹣1C.﹣1D.2
【考点】根的判别式.
【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.
【解答】解:
根据题意得△=22﹣4(k+2)=0,
解得k=﹣1.
故选C.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:
当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
10.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.
A.12B.12或66C.15D.33
【考点】一元二次方程的应用.
【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.
【解答】解:
设全组共有x名学生,由题意得
x(x﹣1)=132
解得:
x1=﹣11(不合题意舍去),x2=12,
答:
全组共有12名学生.
故选:
A.
【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
二、耐心填一填:
(把答案填放相应的空格里.每小题3分,共15分).
11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:
﹣3x2+2x﹣3=0.
【考点】一元二次方程的一般形式.
【专题】开放型.
【分析】根据一元二次方程的一般形式和题意写出方程即可.
【解答】解:
由题意得:
﹣3x2+2x﹣3=0,
故答案为:
﹣3x2+2x﹣3=0.
【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:
ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.
12.﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4,另一个根是5.
【考点】一元二次方程的解.
【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.
【解答】解:
∵x=﹣1是方程x2+bx﹣5=0的一个实数根,
∴把x=﹣1代入得:
1﹣b﹣5=0,
解得b=﹣4,
即方程为x2﹣4x﹣5=0,
(x+1)(x﹣5)=0,
解得:
x1=﹣1,x2=5,
即b的值是﹣4,另一个实数根式5.
故答案为:
﹣4,5;
【点评】本题考查了一元二次方程的解的概念:
使方程两边成立的未知数的值叫方程的解.
13.方程(2y+1)(2y﹣3)=0的根是y1=﹣
,y2=
.
【考点】解一元二次方程-因式分解法.
【专题】因式分解.
【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.
【解答】解:
∵(2y+1)(2y﹣3)=0,
∴2y+1=0或2y﹣3=0,
解得y1=
,y2=
.
【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.
14.已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2=3.
【考点】根与系数的关系.
【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:
若方程的两根为x1,x2,则x1+x2=﹣
,代入计算即可.
【解答】解:
∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,
∴x1+x2=3,
故答案为:
3.
【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:
若方程的两根为x1,x2,则x1+x2=﹣
,x1•x2=
.
15.用换元法解方程
+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0.
【考点】换元法解分式方程.
【专题】换元法.
【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看做一个整体.
【解答】解:
原方程可化为:
﹣(x2﹣2x)+3=0
设y=x2﹣2x
﹣y+3=0
∴1﹣y2+3y=0
∴y2﹣3y﹣1=0.
【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.
三、按要求解一元二次方程:
16.按要求解一元二次方程
(1)4x2﹣8x+1=0(配方法)
(2)7x(5x+2)=6(5x+2)(因式分解法)
(3)3x2+5(2x+1)=0(公式法)
(4)x2﹣2x﹣8=0.
【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.
【分析】
(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.
(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.
(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.
【解答】解:
(1)4x2﹣8x+1=0(配方法)
移项得,x2﹣2x=﹣
,
配方得,x2﹣2x+1=﹣
+1,
(x﹣1)2=
,
∴x﹣1=±
∴x1=1+
,x2=1﹣
.
(2)7x(5x+2)=6(5x+2)(因式分解法)
7x(5x+2)﹣6(5x+2)=0,
(5x+2)(7x﹣6)=0,
∴5x+2=0,7x﹣6=0,
∴x1=﹣
,x2=
;
(3)3x2+5(2x+1)=0(公式法)
整理得,3x2+10x+5=0
∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,
∴x=
=
=
,
∴x1=
,x2=
;
(4)x2﹣2x﹣8=0.
(x+4)(x﹣2)=0,
∴x+4=0,x﹣2=0,
∴x1=﹣4,x2=2.
【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
四、细心做一做:
20.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18m),另三边用竹篱笆围成,如果竹篱笆的总长为35m,求鸡场的长与宽各为多少?
【考点】一元二次方程的应用.
【专题】几何图形问题.
【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.
【解答】解:
设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150
解这个方程
;x2=10
当养鸡场的宽为
时,养鸡场的长为20m不符合题意,应舍去,
当养鸡场的宽为x1=10m时,养鸡场的长为15m.
答:
鸡场的长与宽各为15m,10m.
【点评】本题考查的是一元二次方程的应用,难度一般.
21.如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计﹣横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?
【考点】一元二次方程的应用.
【专题】几何图形问题.
【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.
【解答】解:
设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,
由题意得(32﹣2x)(15﹣x)=32×15×(1﹣
)
即x2﹣31x+30=0
解得x1=30x2=1
∵路宽不超过15米
∴x=30不合题意舍去
答:
小路的宽应是1米.
【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
22.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
【考点】一元二次方程的应用.
【专题】增长率问题.
【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).
(1)可先求出增长率,然后再求2007年的盈利情况.
(2)有了2008年的盈利和增长率,求出2009年的就容易了.
【解答】解:
(1)设每年盈利的年增长率为x,
根据题意,得1500(1+x)2=2160.
解得x1=0.2,x2=﹣2.2(不合题意,舍去).
∴1500(1+x)=1500(1+0.2)=1800.
答:
2007年该企业盈利1800万元.
(2)2160(1+0.2)=2592.
答:
预计2009年该企业盈利2592万元.
【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.
23.中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?
这时每月应进多少件衬衫?
【考点】一元二次方程的应用.
【专题】销售问题.
【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.
【解答】解:
设涨价4x元,则销量为(500﹣40x),利润为(10+4x),
由题意得,(500﹣40x)×(10+4x)=8000,
整理得,5000+2000x﹣400x﹣160x2=8000,
解得:
x1=
,x2=
,
当x1=
时,则涨价10元,销量为:
400件;
当x2=
时,则涨价30元,销量为:
200件.
答:
当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.
【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.
24.如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.
(1)经过几秒△PCQ的面积为△ACB的面积的
?
(2)经过几秒,△PCQ与△ACB相似?
(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?
若有可能,求出运动的时间;若没有可能,请说明理由.
【考点】一元二次方程的应用;相似三角形的判定.
【专题】几何动点问题.
【分析】
(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=
S△ABC列出方程求解;
(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有
=
或
=
,分别代入可得到关于t的方程,可求得t的值;
(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么
=
,依此列出比例式
=
,解方程即可.
【解答】解:
(1)设经过x秒△PCQ的面积为△ACB的面积的
,
由题意得:
PC=2xm,CQ=(6﹣x)m,
则
×2x(6﹣x)=
×
×8×6,
解得:
x=2或x=4.
故经过2秒或4秒,△PCQ的面积为△ACB的面积的
;
(2)设运动时间为ts,△PCQ与△ACB相似.
当△PCQ与△ACB相似时,则有
=
或
=
,
所以
=
,或
=
,
解得t=
,或t=
.
因此,经过
秒或
秒,△OCQ与△ACB相似;
(3)有可能.
由勾股定理得AB=10.
∵CD为△ACB的中线,
∴∠ACD=∠A,∠BCD=∠B,
又PQ⊥CD,
∴∠CPQ=∠B,
∴△PCQ∽△BCA,
∴
=
,
=
,
解得y=
.
因此,经过
秒,PQ⊥CD.
【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大版九年级上册数学 第2章一元二次方程检测题 试题 北师大 九年级 上册 数学 一元 二次方程 检测