全新小学数学利润与折扣问题优选.docx
- 文档编号:25334785
- 上传时间:2023-06-07
- 格式:DOCX
- 页数:12
- 大小:22.15KB
全新小学数学利润与折扣问题优选.docx
《全新小学数学利润与折扣问题优选.docx》由会员分享,可在线阅读,更多相关《全新小学数学利润与折扣问题优选.docx(12页珍藏版)》请在冰豆网上搜索。
全新小学数学利润与折扣问题优选
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
利润=成本×利润率
在利润问题里,如果题目没有特指的话,一般是以成本为单位“1”的
例如:
现在有100太冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问利润是多少?
利润25%指的是利润率,那么每台售价就是成本的:
1+25%=125%
每台成本就是:
1500÷125%=1200(元)
每台的利润是:
1500-1200=300(元)或1200×25%=300(元)
总利润就是:
300×100=30000(元)
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。
期望利润=成本价×期望利润率。
[经典例题]
例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?
(B级)
解:
定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:
208+50=258(元)
每台DVD的进价258÷(121.5%-1)=1200(元)
答:
每台DVD的进价是1200元
例2:
一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价是多少元?
(B级)
分析:
解:
设乙店的成本价为1
(1+15%)是乙店的定价
(1-10%)×(1+20%)是甲店的定价
(1+15%)-(1-10%)×(1+20%)=7%
11.2÷7%=160(元)
160×(1-10%)=144(元)
答:
甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。
结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?
(B级)
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:
设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%
答:
第二次降价后的价格是原来价格的62.5%
[练习]:
1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。
这种商品的进货价是每个多少元?
2、租用仓库堆放3吨货物,每月租金7000元。
这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。
问:
每千克货物的价格降低了多少元?
3、张先生向商店订购了每件定价100元的某种商品80件。
张先生对商店经理说:
“如果你肯减价,那么每减价1元,我就多订购4件。
”商店经理算了一下,若减价5%,则由于张先生多订购,获得的利润反而比原来多100元。
问:
这种商品的成本是多少元?
4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。
从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。
如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润率,零售价应是每千克多少元?
5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。
新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。
问:
小明共买了多少个球?
6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。
甲种贷款年利率为12%,乙种贷款年利率为14%。
该厂申请甲、乙两种贷款的金额各是多少?
7、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。
这批钢笔的进货价每支多少元?
8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。
妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。
若这10个蜜瓜都在第三天买,则能少花多少钱?
9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。
问:
这批凉鞋共多少双?
10、体育用品商店用3000元购进50个足球和40个篮球。
零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。
问:
每个足球和篮球的进价是多少元?
“利润问题”
商店出售商品,总是期望获得利润。
例如某商品买入价(成本)是50元,以70元卖出,就获得利润70-50=20(元)。
通常,利润也可以用百分数来说,20÷50=0.4=40%,我们也可以说获得 40%的利润.因此
利润的百分数=(卖价-成本)÷成本×100%.
卖价=成本×(1+利润的百分数).
成本=卖价÷(1+利润的百分数).
商品的定价按照期望的利润来确定.
定价=成本×(1+期望利润的百分数).
定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售.减价有时也按定价的百分数来算,这就是打折扣.减价 25%,就是按定价的(1-25%)= 75%出售,通常就称为75折.因此
卖价=定价×折扣的百分数.
(1+期望利润的百分数)×折扣=(1+利润的百分数)
【例1】某商品按定价的 80%(八折或 80折)出售,仍能获得20%的利润,定价时期望的利润百分数是( )
A:
40% B:
60% C:
72% D:
50%
解析:
设定价是“1”,卖价是定价的 80%,就是0.8.因为获得20%的利润,则成本为2/3。
定价的期望利润的百分数是 1/3÷2/3=50%
答:
期望利润的百分数是50%.
【例2】 某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是( )
A:
12% B:
18% C:
20% D:
17%
解:
设这批笔记本的成本是“1”.因此定价是1×(1+ 30%)=1.3.其中
80%的卖价是 1.3×80%,
20%的卖价是 1.3÷2×20%.
因此全部卖价是
1.3×80% +1.3 ÷ 2×20%= 1.17.
实际获得利润的百分数是
1.17-1= 0.17=17%.
答:
这批笔记本商店实际获得利润是 17%.
【例3】有一种商品,甲店进货价(成本)比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11.2元.问甲店的进货价是( )元?
A:
110 B:
200 C:
144 D:
160
解:
设乙店的进货价是“1”,甲店的进货价就是0.9.
乙店的定价是 1×(1+ 15%),甲店的定价就是 0.9×(1+20%).
因此乙店的进货价是
11.2÷(1.15- 0.9×1.2)=160(元).
甲店的进货价是
160× 0.9= 144(元).
答:
甲店的进货价是144元.
设乙店进货价是1,比设甲店进货价是1,计算要方便些。
【例4】开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少?
A:
89% B:
88% C:
72% D:
87.5%
解:
设去年的利润是“1”.
利润下降了40%,转变成去年成本的 10%,因此去年成本是 40%÷10%= 4.
在售价中,去年成本占
因此今年占 80%×(1+10%)= 88%.
答:
今年书的成本在售价中占88%.
因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷.
【例5】 一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:
打了( )折扣?
A:
6 B:
7 C:
8 D:
9
解:
设商品的成本是“1”.原来希望获得利润0.5.
现在出售 70%商品已获得利润
0.5×70%= 0.35.
剩下的 30%商品将要获得利润
0.5×82%-0.35=0.06.
因此这剩下30%商品的售价是
1×30%+ 0.06= 0.36.
原来定价是 1×30%×(1+50%)=0.45.
因此所打的折扣百分数是
0.36÷0.45=80%.
答:
剩下商品打8折出售.
从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.
【例6】 某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是( )元?
A:
100 B:
200 C:
300 D:
220
解:
按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润
(45-35)×12=120(元).
出售8个也能获得同样利润,每个要获得利润
120÷8=15(元).
不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是
(45-15)÷(1-85%)=200(元).
答:
每个商品的定价是200元.
【例7】 张先生向商店订购某一商品,共订购60件,每件定价100元.
张先生对商店经理说:
“如果你肯减价,每件商品每减价1元,我就多订购3件.”商店经理算了一下,如果差价 4%,由于张先生多订购,仍可获得原来一样多的总利润.问这种商品的成本是( )
A:
66 B:
72 C:
76 D:
82
解:
减价4%,按照定价来说,每件商品售价下降了100×4%=4(元).因此张先生要多订购 4×3=12(件).
由于60件每件减价 4元,就少获得利润
4×60= 240(元).
这要由多订购的12件所获得的利润来弥补,因此多订购的12件,每件要获得利润
240÷12=20(元).
这种商品每件成本是
100-4-20=76 (元).
答:
这种商品每件成本76元.
利润和折扣
导言:
利润问题是一种常见的百分数应用题。
商店出售商品,总是期望获得利润。
例如某商品买入价(成本)是100元,以120元(卖价或售价)卖出,就赚了120-100=20元(利润)。
通常,利润也可以用百分数来说,这个商品赚了20÷100=0.2=20%,我们说获得了20%的利润(利润率)。
解答利润问题的百分数应用题首先要理解以下关系:
售价(卖价)=成本+利润
利润=卖价–成本
利润率=利润÷成本×100%=(售价-成本)÷成本×100%
售价=成本×(1+利润率)
成本=售价÷(1+利润率)
注意:
当赚时,利润率前是“+”号,当亏时,利润率前是“-”号
商品有时会降价销售,俗称“折扣”或“打折”出售。
“几折”就是表示十分之几,也就是百分之几十。
比如说某种商品打“七折”出售,就是按原卖出价的7/10或70%出售;某商品打“六五折”,就是按原卖价的65%出售。
例1.一种彩电,第一次降价20%,第二次又降价20%,第二次降价后,这种彩电的价格比原价降低了百分之几?
解析:
第一个“20%”的单位是“1”是原价,第二个“20%”的单位“1”是第一次降价后的价格,而题目最后的问题中的单位“1”是原价,所以要把第二个单位“1”转化成以原价做单位“1”
第一次降价后的价格是1-20%=80%
第二次降了80%×20%=16% 即第二次降了原价的16%
二次总降低了20%+16%=36%,即比原价降价了36%
例2.某商品按定价的80%(八折)出售,仍能获得20%的利润。
定价时期望的利润是多少?
解析:
题目未告之一个具体的数量,可见求定价时期望的利润就是求利润率。
利润率=(售价-成本)÷成本×100%,很明显,想要求出利润率,必须先求出售价和成本。
假设原来售价是100元(可以假设任何具体的钱数,或就是1)
打折后的售价是100×80%=80元
卖80元仍能获20%的利润,
根据公式:
成本=售价÷(1+利润率)
=80÷(1+29%)
=200/3(元)
原来的期望的利润率=(售价-成本)÷成本×100%
=(100–200/3)÷200/3×100%
=50%
例3.某商品按20%的利润定价,然后按八八折卖出,共得利润84元,这种商品的成本是多少元?
解析:
方法
(一)分数应用题的方法
由“20%”我们可知单位“1”是成本。
属分数除法应用题,如果能找出利润84元所对应的分率,相除就能算出成本来。
成本是1,售价是1+20%=120%,打折后的售价是120%×88%=105.6%
利润就是105.6%-1=5.6%
84÷5.6%=1500(元) 即为单位“1”成本了。
方法
(二)方程的方法
设成本为m元,根据公式:
实际售价-成本=利润这一等量关系,列出方程
m×(1+20%)×88%-m=84
解得m=1500(元)
例4.商品以每双6.5元购进一批凉鞋,售价为7.4元.卖到还剩下5双时,除成本外还获利44元.这批凉鞋共有多少双?
解析:
由题意可知,每卖出一双凉鞋,就能获利7.4–6.5=0.9元。
卖出还剩下5双时,除成本外还获利44元,这里的成本很明显是全部凉鞋的成本,包括还没卖出的5双凉鞋。
假设最后5双也卖出,这样,这批凉鞋总共可获利44+5×7.4=81(元),根据利润总数÷每双的利润=总双数
总双数=81÷0.9=90(双)
该题也可用方程,不妨试试
例5.某商店同时卖出两件商品,每件各卖得120元,但其中一件赚了20%,另一件亏了20%,问这个商店卖出这两件商品总的是赚了还是亏了?
解析:
第一件商品:
成本=售价÷(1+利润率)=120÷(1+20%)=100元
第二件商品:
成本=售价÷(1+利润率)=120÷(1-20%)=150元
两件商品的总成本是250元,总共卖了240元,该商店亏了10元
例6.某种商品按定价卖出可得利润960元,如按定价的80%出售,则亏损832元。
该商品的购入价是多少元?
解析:
由题可知,单位“1”是定价,定价=成本+利润.画出线段图来,并把定价、利润960元、现价(定价的80%)、亏损832元一一在线段图上标明,我们很容易找出(960+832)元所对应的百分率是20%(1-80%),
(960+832)÷(1-80%)=8960(元),即为单位“1”:
定价
成本(购入价)=定价-利润=8960-960=8000(元)
我们也可以用方程来解
设该商品的购入价是x元,由这句话“按原定价的80%出售后,正好亏损832元“,可根据这一数量关系列出方程
(x+960)×80%=x-832
解得 x=8000(元)
例7.甲乙两种商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两种商品都按定价的90%出售,结果仍获利27.70元,甲乙两种商品的成本各是多少元?
解析:
假设法
假设全是甲商品,甲的成本就是200元,定价是200×(1+30%)=260元,按90%出售的价格是260×90%=234元,获利234-200=34(元),比题目中的获利多出34-27.70=6.3元,一件甲商品与一件乙商品在利润上相差30%×90%-20%×90%=9%,所以乙商品的成本就是6.3÷9%=70元,甲商品的成本就是200-70=130(元)
我们也可以用方程来解
设甲商品的成本是y元,那么乙商品的成本是(200-y)元
由这句话“两种商品都按定价的90%出售,结果仍获利27.70元”,根据这一数量关系可列出方程
y×(1+30%)×90%+(200-y)×(1+20%)×90%-200=27.70
解得y=130(元)
那么,乙商品的成本就是70元
小结:
解答利润与折扣问题,常用的方法中,除了分数应用题的一些解答方法外,方程也是一种不错的选择。
最新文件----------------仅供参考--------------------已改成-----------word文本---------------------方便更改
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全新 小学 数学 利润 折扣 问题 优选