太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力.docx
- 文档编号:253227
- 上传时间:2022-10-07
- 格式:DOCX
- 页数:14
- 大小:139.68KB
太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力.docx
《太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力.docx》由会员分享,可在线阅读,更多相关《太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力.docx(14页珍藏版)》请在冰豆网上搜索。
太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力
太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力坍缩。
大多坍缩的质量集中在中心,形成了太阳,其余部分摊平并形成了一个原行星盘,继而形成了行星、卫星、陨星和其他小型的太阳系天体系统。
这被称为星云假说的广泛接受模型,最早是由18世纪的伊曼纽·斯威登堡、伊曼努尔·康德和皮埃尔-西蒙·拉普拉斯提出。
其随后的发展与天文学、物理学
、地质学和行星学等多种科学领域相互交织。
一个原行星盘的艺术想象图
自1950年代太空时代降临,以及1990年代太阳系外行星的发现,此模型在解释新发现的过程中受到挑战又被进一步完善化。
从形成开始至今,太阳系经历了相当大的变化。
有很多卫星由环绕其母星气体与尘埃组成的星盘中形成,其他的卫星据信是俘获而来,或者来自于巨大的碰撞(地球的卫星月球属此情况)。
天体间的碰撞至今都持续发生,并为太阳系演化的中心。
行星的位置经常迁移,某些行星间已经彼此易位。
这种行星迁移现在被认为对太阳系早期演化起负担起绝大部分的作用。
白矮星-内部结构模型图[1] 图册
就如同太阳和行星的出生一样,它们最终将灭亡。
大约50亿年后,太阳会冷却并向外膨胀超过现在的直径很多倍(成为一个红巨星),抛去它的外层成为行星状星云,并留下被称为白矮星的恒星尸骸。
在遥远的未来,太阳的环绕行星会逐渐被经过的恒星的引力卷走。
它们中的一些会被毁掉,另一些则会被抛向星际间的太空。
最终,数万亿年之后,太阳终将会独自一个,不再有其它天体在太阳系轨道上。
太阳系起源及演化-历史
太阳系形成和演化史假说
有关世界起源和命运的思想可以追朔到已知最早的文字记载;然而,在那大部分的时代里没有人试图把这样的理论与“太阳系”的存在联系起来,原因很简单,因为当时时人一般不相信我们现在了解的太阳系是存在的。
迈向太阳系演化形成理论的第一步是对日心说的广泛认同,该模型把太阳放在系统的中心,把地球放在环绕其的轨道上。
这一理论孕育了数千年,但直到17世纪末才广泛被接受。
第一次有记载的“太阳系”术语的使用是在1704年。
现今太阳系形成的标准理论:
星云假说,从其在18世纪被伊曼纽·斯威登堡、伊曼努尔·康德、和皮埃尔-西蒙·拉普拉斯提出之日起就屡经采纳和摒弃。
对该假说重大的批评是它很明显无法解释太阳相对其行星而言缺少角动量。
然而,自从1980年代早期对新恒星的研究显示,正如星云假想预测的那样,它们被冷的气体和灰尘的盘环绕着,才导致这一假想的重新被接受。
要了解太阳将如何继续演化需要对它的能量之源有所认知。
亚瑟·爱丁顿对爱因斯坦的相对论的确认导致他认识到太阳的能量来自于它核心的核聚变。
1935年,爱丁顿进一步提议其他元素也有可能是在恒星中形成。
弗雷德·霍伊尔 进一步详尽阐释这一假设,认为演化成为的红巨星的恒星会在其核心产生很多比氢和氦重的元素。
当红巨星最终抛掉它的外层时,这些元素将被回收以形成其它恒星。
形成
皮埃尔-西蒙·拉普拉斯,星云假说的发起者之一
参见:
太阳星云
太阳系起源及演化-前太阳星云
星云假说主张太阳系从一巨大的有几光年跨度的分子云的碎片引力塌陷的过程中形成。
几十年前,传统观点还是认为太阳是在相对孤立中形成的,但对古陨石的研究发现短暂的同位素(如铁-60)的踪迹,该元素只能在爆炸及寿命较短的恒星中形成。
这显示在太阳形成的过程中附近发生了若干次超新星爆发。
其中一颗超新星的冲击波可能在分子云中造成了超密度区域,导致了这个区域塌陷,从而触发了太阳的形成。
因为只有大质量、短寿恒星才会产生超新星爆发,太阳一定是在一个产生了大质量恒星的一个大恒星诞生区域里(可能类似于猎户座星云)形成。
哈勃太空望远镜拍摄的猎户座星云,一个宽约20光年的“恒星摇篮”,可能近似于太阳形成之前的前太阳星云
这些被称为“前太阳星云”的塌陷气体区域中的一部分将形成太阳系。
这一区域直径在7000到20,000天文单位(AU)其质量刚好超过太阳。
它的组成跟今天的太阳差不多。
由太初核合成产生的元素氢、氦、和少量的锂组成了塌陷星云质量的98%。
剩下的2%质量由在前代恒星核合成中产生的金属重元素组成。
在这些恒星的晚年它们把这些重元素抛射成为星际物质。
因为角动量守恒,星云塌陷时转动加快。
随着星云浓缩,其中的原子相互碰撞频率增高,把它们的动能转化成热能。
其质量集中的中心越来越比周边环绕的盘热。
大约经过100,000年,在引力、气体压力、磁场力和转动惯量的相互竞争下,收缩的星云扁平化成了一个直径约200AU的原行星盘,并在中心形成一个热致密的原恒星(内部氢聚变尚未开始的恒星)。
太阳发展到了这一演化点时,已被认为是一颗金牛T星类型的恒星。
对金牛T星的研究表明它们常伴以0.001-0.1太阳质量的前行星物质组成的盘。
这些盘伸展达几百AU——哈勃太空望远镜已经观察过在恒星形成区(如猎户座星云)直径达1000AU的原星盘——并且相当冷,最热只能达到一千开尔文。
在五千万年内,太阳核心的温度和压力变得如此巨大,它的氢开始聚变,产生内部能源抗拒引力收缩的力直到达至静力平衡。
这意味着太阳成为了主序星,这是它生命中的一个主要阶段。
主序星从它们核心的氢聚变为氦的过程中产生能量。
太阳至今还是一颗主序星。
参见:
原行星盘艺术家想像中的太阳星云
太阳系里诸多行星均被认为成形于“太阳星云”,而太阳星云是太阳形成中剩下的气体和尘埃形成的圆盘状云。
目前被接受的行星形成假说称为吸积,在这里行星从绕原恒星的轨道上的尘埃颗粒开始形成。
通过直接收缩,这些颗粒形成一到十公里直径的块状物,然后它们互相碰撞形成更大的尺寸约5公里的天体(微行星)。
透过进一步相撞逐渐加大它们的尺寸,在接下来的几百万年中大约每年增加几厘米。
内太阳系(距中心直径4天文单位以内的区域)过于温暖以至于易挥发的如水和甲烷分子难以聚集,所以那里形成的微行星只能由高熔点的物质形成,如铁、镍、铝和石状硅酸盐。
这些石质天体会成为类地行星(水星、金星和火星)。
这些物质在宇宙中很稀少,大约只占星云质量的0.6%,所以类地行星不会长得太大。
类地行星胚胎在太阳形成100,000年后长到0.05地球质量,然后就停止聚集质量;随后的这些行星大小的天体间的相互撞击与合并使它们这些类地行星长到它们今天的大小(见下面的类地行星)。
类木行星(木星、土星、天王星和海王星)形成于更远的冻结线之外,在介于火星和木星轨道之间的物质冷到足以使易挥发的冰状化合物保持固态。
类木行星上的冰比类地行星上的金属和硅酸盐更丰富,使得类木行星的质量长得足够大到可以俘获氢和氦这些最轻和最丰富的元素。
冻结线以外的微行星在3百万年间聚集了4倍地球的质量。
今天,这四个类木行星在所有环绕太阳的天体质量中所占的比例可达99%。
理论学者认为木星处于刚好在冻结线之外的地方并不是偶然的。
因为冻结线聚集了大量由向内降落的冰状物质蒸发而来的水,其形成了一个低压区,加速了轨道上环绕的尘埃颗粒的速度阻止了它们向太阳落去的运动。
在效果上,冻结线起到了一个壁垒的作用,导致物质在距离太阳约5天文单位处迅速聚集。
这些过多的物质聚集成一个大约有10个地球质量的胚胎,然后开始通过吞噬周围星盘的氢而迅速增长,只用了1000年就达到150倍地球质量并最终达到318倍地球质量。
土星质量显著地小可能是因为它比木星晚了几百万年形成,当时所能使用的气体少了。
像年轻的太阳这样的金牛T星拥有远比老恒星更稳定、更强烈的星风。
天王星和海王星据信是在木星和土星之后,在太阳风把星盘物质大部分吹走之后形成。
结果导致这两个行星上聚集的氢和氦很少,各自不超过一倍地球质量。
天王星和海王星有时被引述为失败的核。
对这些行星来说形成理论的主要问题是它们的形成时间。
在它们目前的位置,它们的核需要数亿年的时间聚集。
这意味着天王星和海王星可能是在更靠近太阳的地方形成的——位于接近甚至介于木星和土星之间——后来才向外迁移。
(见下面的行星迁移)。
在微行星的时代,行星运动并不全是向内朝向太阳;从维尔特二号上取回的星尘样本表明太阳系早期形成的物质从温暖的太阳系内部向柯伊伯带区域迁移。
过了三百万到一千万年,年轻太阳的太阳风会清净原星盘内所有的气体和尘埃,把它们吹向星际空间,从而结束行星的生长。
后续的演化行星原先被认为是在我们今天看到的它们的轨道内或附近形成的。
但这一观点在20世纪晚期和21世纪初期发生了巨变。
现在认为太阳系在最初形成之后看上去跟现在很不一样:
在内太阳系有几个至少跟金星一样大的天体,外太阳系也比现在紧密,柯伊伯带离太阳要近得多。
太阳系起源及演化-类地行星
行星形成时代结束后内太阳系有50-100个月球到火星大小的行星胚胎。
进一步的生长可能只是由于这些天体的相互碰撞和合并,这一过程持续了大约1亿年。
这些天体互相产生引力作用,互相拖动对方的轨道直到它们相撞,长得更大,直到最后我们今天所知的4个类地行星初具雏形。
其中的一个这样的巨大碰撞据信导致了月球的形成(见下文卫星),另外一次剥去了早期水星的外壳。
此模型未解决的问题是它不能解释这些原类地行星的初始轨道——得要相当的偏心圆形才能相撞——是如何形成今天这样相当稳定且接近圆形的轨道的。
此“偏圆去除”的假说之一认为在气体盘中形成的类地行星尚未被太阳驱离。
这些残余气体的“引力拖拉”终将降低行星的能量,平滑化它们的轨道。
不过,如果存在这样的气体,一开始它就会防止类地行星的轨道变得如此偏圆。
另一个假说认为引力拖拉不是发生在行星和气体之间,而是发生在行星和余留的小天体之间。
当大的天体行经小天体群时,小天体手受到大天体的引力吸引,在大天体的路径形成了一个高密度区,一个“引力唤醒”,由此降低了大天体使其进入一个更正规的轨道。
太阳系起源及演化-小行星带
小行星带位于类地行星区外围边缘,离太阳2到4个AU。
小行星带开始有多于足以形成超过2到3个地球一样的行星的物质,并且实际上,有很多微行星在那里形成。
如同类地行星,这一区域的微行星后来合并形成20到30个月亮到火星大小的行星胚胎;但是因为在木星附近,意味着太阳形成3百万年后这一区域的历史发生了巨大变化。
木星和土星的轨道共振对小行星带特别强烈,并且与更多的大质量的行星胚胎的的引力交互作用使更多的微行星散布到这些共振中,造成它们在与其他天体碰撞后被撕碎,而不是凝结聚合下去。
随着木星在形成后的向内迁移(见下文行星迁移),共振将横扫整个小行星带,动态地激发这一区域的天体数量,并加大它们之间的相对速度。
共振和行星胚胎的累加作用要么使微行星脱离小行星带,要么激发它们的轨道倾角和偏心率变化。
某些大质量的行星胚胎也被木星抛出,而其它的可能迁移到了内太阳系里,并在类地行星的最终聚集中发挥了作用。
在这个初始消竭时期,大行星和行星胚胎的作用下在小行星带剩下的主要由微行星组成的总质量不到地球的1%。
这仍是目前在主带的质量的10到20倍,约1/2000地球质量。
第二消竭阶段据信是当木星和土星进入临时2:
1轨道共振时发生,使小行星带的质量下降接近至目前规模(见下文)。
内太阳系的巨大撞击期可能对地球从小行星带获取其目前的水成分(~6×1021公斤)起到了一定的作用。
水太易挥发,不会在地球的形成时期就存在,一定是其后从太阳系外部较冷的地方送来的。
水可能是由被木星甩离小行星带的行星胚胎和小的微行星带过来的。
2006年发现的一些主带彗星也被认为可能是地球的水的来源之一。
在相比之下,从柯伊伯带或更远的区域的彗星带来的不过约6%地球的水。
胚种论假说认为,生命本身可能是通过这种方式播撒到地球上,虽然这种想法不被广泛接受。
太阳系起源及演化-行星迁移
根据星云假说,外层的两个行星处于“错误位置”关于天王星和海王星错误位置可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 太阳系 形成 演化 始于 46 年前 一片 巨大 分子 云中一 小块 引力