次函数经典题及答案.docx
- 文档编号:25267648
- 上传时间:2023-06-06
- 格式:DOCX
- 页数:32
- 大小:102.29KB
次函数经典题及答案.docx
《次函数经典题及答案.docx》由会员分享,可在线阅读,更多相关《次函数经典题及答案.docx(32页珍藏版)》请在冰豆网上搜索。
次函数经典题及答案
一.定义型
例1.已知函数是一次函数,求其解析式。
解:
由一次函数定义知
,
,故一次函数的解析式为y=-6x+3。
注意:
利用定义求一次函数y=kx+b解析式时,要保证k≠0。
如本例中应保证m-3≠0。
二.点斜型
例2.已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。
解:
一次函数的图像过点(2,-1),
,即k=1。
故这个一次函数的解析式为y=x-3。
变式问法:
已知一次函数y=kx-3,当x=2时,y=-1,求这个函数的解析式。
三.两点型
例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____。
解:
设一次函数解析式为y=kx+b,由题意得
,故这个一次函数的解析式为y=2x+4
四.图像型
例4.已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:
设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1,0)、(0,2)
有故这个一次函数的解析式为y=-2x+2
五.斜截型
例5.已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:
两条直线;。
当k1=k2,b1≠b2时,
直线y=kx+b与直线y=-2x平行,。
又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2
六.平移型
例6.把直线y=2x+1向下平移2个单位得到的图像解析式为___________。
解析:
设函数解析式为y=kx+b,
直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行
直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为
七.实际应用型
例7.某油箱中存油20升,油从管道中匀速流出,流速为升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
解:
由题意得Q=,即Q=+20
故所求函数的解析式为Q=+20()
注意:
求实际应用型问题的函数关系式要写出自变量的取值范围。
八.面积型
例8.已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
解:
易求得直线与x轴交点为,所以,所以|k|=2,即故直线解析式为y=2x-4或y=-2x-4
九.对称型
若直线与直线y=kx+b关于
(1)x轴对称,则直线的解析式为y=-kx-b
(2)y轴对称,则直线的解析式为y=-kx+b
(3)直线y=x对称,则直线的解析式为
(4)直线y=-x对称,则直线的解析式为
(5)原点对称,则直线的解析式为y=kx-b
例9.若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。
解:
由
(2)得直线l的解析式为y=-2x-1
十.开放型
例10.已知函数的图像过点A(1,4),B(2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。
解:
(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6
(2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为
(3)其它(略)
十一.几何型
例11.如图,在平面直角坐标系中,A、B是x轴上的两点,,,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0,3)。
(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;
(2)求图像过点E、F的一次函数的解析式。
解:
(1)由直角三角形的知识易得点A(-3√3,0)、B(√3,0),由待定系数法可求得二次函数解析式为
,对称轴是x=-√3
(2)连结OE、OF,则,。
过E、F分别作x、y轴的垂线,垂足为M、N、P、G,易求得E、F,由待定系数法可求得一次函数解析式为
十二.方程型
例12.若方程x2+3x+1=0的两根分别为,求经过点P
和Q的一次函数图像的解析式
解:
由根与系数的关系得
点P(11,3)、Q(-11,11)
设过点P、Q的一次函数的解析式为y=kx+b则有
解得故这个一次函数的解析式为
十三.综合型
例13.已知抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D在双曲线上,直线y=kx+c经过点D和点C(a,b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。
解:
由抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D
在双曲线上,可求得抛物线的解析式为:
y1=-7x2+14x-12,顶点D1(1,-5)及y2=-27x2+18x-18
顶点D2
解方程组得,即C1(-1,-4),C2(2,-1)
由题意知C点就是C1(-1,-4),所以过C1、D1的直线是;过C1、D2的直线是
函数问题1
已知正比例函数,则当k≠0时,y随x的增大而减小。
解:
根据正比例函数的定义和性质,得k<0。
函数问题2
已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是()
A.x1>x2B.x1 解: 根据题意,知k=3>0,且y1>y2。 根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。 故选A。 函数问题3 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过() A.第一象限B.第二象限C.第三象限D.第四象限 解: 由kb>0,知k、b同号。 因为y随x的增大而减小,所以k<0,从而b<0。 故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。 故选A. 函数问题4 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。 如果挂上3kg物体后,弹簧总长是,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围. 分析: 此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理. 解: 由题意设所求函数为y=kx+12,则=3k+12解之,k= ∴y与x的函数关系式为y=+12 由题意,得: 23=+12x=22解之,x=22 ∴自变量x的取值范围是0≤x≤22 函数问题5 某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省? 此题要考虑X的范围 解: 设总费用为Y元,刻录X张,则电脑公司: Y1=8X学校: Y2=4X+120 当X=30时,Y1=Y2,当X>30时,Y1>Y2,当X<30时,Y1 函数问题6 (1)y与x成正比例函数,当y=5时,x=,求这个正比例函数的解析式. (2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式. 解: (1)设所求正比例函数的解析式为y=kX,把y=5,x=代入上式得,5=,解之,得k=2∴所求正比例函数的解析式为y=2X (2)设所求一次函数的解析式为y=kx+b ∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足y=kx+b,将x=-1、y=2和x=3、y=-5分别代入上式,得2=-k+b,-5=3k+b解得k=-7/4,b=1/4 ∴此一次函数的解析式为y=-7x/4+1/4 点评: (1)不能化成带分数. (2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程. 函数问题7 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象. 分析: 拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量. 解: 函数关系式: Q=20-5t,其中t的取值范围: 0≤t≤4。 图象是以(0,20)和(4,0)为端点的一条线段(图象略)。 点评: 注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线. 函数问题8 已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式. 分析: 从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法. 解: 设所求一次函数解析式为y=kx+b ∵点P的坐标为(-2,0)∴|OP|=2 设函数图象与y轴交于点B(0,m)根据题意,SΔPOB=3∴|m|=3 ∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3) 将P(-2,0)及B1(0,3);或P(-2,0)及B2(0,-3)的坐标代入y=kx+b中,得-2k+b=0,b=3;或-2k+b=0,b=-3。 解得k=,b=3;或k=,b=-3。 ∴所求一次函数的解析式为y=+3或y=。 点评: (1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线. (2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值. 【考点指要】 一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法. 函数问题9 如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。 分析: 因为函数的增减性不明确,所以分 (1)K>0时,x=-2,y=—11;X=6,y=9。 (2)K<0时,此时x=-2,y=9;X=6,y=—11。 【考点指要】 此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。 基本概念题 本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件. 例1下列函数中,哪些是一次函数? 哪些是正比例函数? (1)y=- x; (2)y=- ;(3)y=-3-5x; (4)y=-5x2;(5)y=6x- (6)y=x(x-4)-x2. [分析]本题主要考查对一次函数及正比例函数的概念的理解. 解: (1)(3)(5)(6)是一次函数,(l)(6)是正比例函数. 例2当m为何值时,函数y=-(m-2)x +(m-4)是一次函数? [分析]某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0. 解: ∵函数y=(m-2)x +(m-4)是一次函数, ∴ ∴m=-2.∴当m=-2时,函数y=(m-2)x +(m-4)是一次函数. 小结某函数是一次函数应满足的条件是: 一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件: 常数项为0. 基础知识应用题 本节基础知识的应用主要包括: (1)会确定函数关系式及求函数值; (2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式. 例3一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数. [分析] (1)弹簧每挂1kg的物体后,伸长0.5cm,则挂xkg的物体后,弹簧的长度y为(l5+0.5x)cm,即y=15+0.5x. (2)自变量x的取值范围就是使函数关系式有意义的x的值,即0≤x≤18. (3)由y=15+0.5x可知,y是x的一次函数. 解: (l)y=15+0.5x. (2)自变量x的取值范围是0≤x≤18.(3)y是x的一次函数. 学生做一做乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是. 老师评一评研究本题可采用线段图示法,如图11-19所示. 火车从乌鲁木齐出发,t小时所走路程为58t千米,此时,距离库尔勒的距离为s千米,故有58t+s=600,所以,s=600-58t. 例4某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数: M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃. [分析]本题给出了函数关系式,欲求函数值,但没有直接给出t的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案: 102 例5已知y-3与x成正比例,且x=2时,y=7. (1)写出y与x之间的函数关系式; (2)当x=4时,求y的值;(3)当y=4时,求x的值. [分析]由y-3与x成正比例,则可设y-3=kx,由x=2,y=7,可求出k,则可以写出关系式. 解: (1)由于y-3与x成正比例,所以设y-3=kx. 把x=2,y=7代入y-3=kx中,得7-3=2k,∴k=2. ∴y与x之间的函数关系式为y-3=2x,即y=2x+3. (2)当x=4时,y=2×4+3=11. (3)当y=4时,4=2x+3,∴x= . 学生做一做已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是. 老师评一评由y与x+1成正比例,可设y与x的函数关系式为y=k(x+1). 再把x=5,y=12代入,求出k的值,即可得出y关于x的函数关系式. 设y关于x的函数关系式为y=k(x+1).∵当x=5时,y=12, ∴12=(5+1)k,∴k=2.∴y关于x的函数关系式为y=2x+2. 【注意】y与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1. 例6若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是() A.m﹤OB.m>0C.m﹤ D.m>M [分析]本题考查正比例函数的图象和性质,因为当x1<x2时,y1>y2,说明y随x的增大而减小,所以1-2m﹤O,∴m> ,故正确答案为D项. 学生做一做某校办工厂现在的年产值是15万元,计划今后每年增加2万元. (1)写出年产值y(万元)与年数x(年)之间的函数关系式; (2)画出函数的图象;(3)求5年后的产值. 老师评一评 (1)年产值y(万元)与年数x(年)之间的函数关系式为y=15+2x. (2)画函数图象时要特别注意到该函数的自变量取值范围为x≥0,因此,函数y=15+2x的图象应为一条射线. 画函数y=12+5x的图象如图11-21所示. (3)当x=5时,y=15+2×5=25(万元)∴5年后的产值是25万元. 例7已知一次函数y=kx+b的图象如图11-22所示,求函数表达式. [分析]从图象上可以看出,它与x轴交于点(-1,0),与y轴交于点(0,-3),代入关系式中,求出k为即可. 解: 由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b中,得 ∴ ∴此函数的表达式为y=-3x-3. 例8求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式. [分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可. 解: 由题意可设所求函数表达式为y=2x+b, ∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5, ∴所求一次函数的表达式为y=2x-5. 综合应用题 本节知识的综合应用包括: (1)与方程知识的综合应用; (2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题. 例8已知y+a与x+b(a,b为是常数)成正比例. (1)y是x的一次函数吗? 请说明理由; (2)在什么条件下,y是x的正比例函数? [分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k≠0)即可. 解: (1)y是x的一次函数. ∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0) 整理得y=kx+(kb-a). ∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数. (2)当kb-a=0,即a=kb时,y是x的正比例函数. 例9某移动通讯公司开设了两种通讯业务: “全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元. (1)写出y1,y2与x之间的关系; (2)一个月内通话多少分时,两种通讯方式的费用相同? (3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算? [分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论. 解: (1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数) (2)∵两种通讯费用相同,∴y1=y2, 即50+0.4x=0.6x.∴x=250. ∴一个月内通话250分时,两种通讯方式的费用相同. (3)当y1=200时,有200=50+0.4x, ∴x=375(分).∴“全球通”可通话375分. 当y2=200时,有200=0.6x,∴x=333 (分). ∴“神州行”可通话333 分.∵375>333 ,∴选择“全球通”较合算. 例10已知y+2与x成正比例,且x=-2时,y=0. (1)求y与x之间的函数关系式; (2)画出函数的图象; (3)观察图象,当x取何值时,y≥0? (4)若点(m,6)在该函数的图象上,求m的值; (5)设点P在y轴负半轴上, (2)中的图象与x 轴、y轴分别交于A,B两点,且S△ABP=4,求P点的 坐标. [分析]由已知y+2与x成正比例,可设y+2=kx, 把x=-2,y=0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数图象及其性质进行分析,点(m,6)在该函数的图象上,把x=m,y=6代入即可求出m的值. 解: (1)∵y+2与x成正比例,∴设y+2=kx(k是常数,且k≠0) ∵当x=-2时,y=0.∴0+2=k·(-2),∴k=-1. ∴函数关系式为x+2=-x,即y=-x-2. (2)列表; x 0 -2 y -2 0 描点、连线,图象如图所示. (3)由函数图象可知,当x≤-2时,y≥0.∴当x≤-2时,y≥0. (4)∵点(m,6)在该函数的图象上,∴6=-m-2,∴m=-8. (5)函数y=-x-2分别交x轴、y轴于A,B两点,∴A(-2,0),B(0,-2). ∵S△ABP= ·|AP|·|OA|=4,∴|BP|= . ∴点P与点B的距离为4.又∵B点坐标为(0,-2),且P在y轴负半轴上, ∴P点坐标为(0,-6). 例11已知一次函数y=(3-k)x-2k2+18. (1)k为何值时,它的图象经过原点? (2)k为何值时,它的图象经过点(0,-2)? (3)k为何值时,它的图象平行于直线y=-x? (4)k为何值时,y随x的增大而减小? [分析]函数图象经过某点,说明该点坐标适合方程;图象与y轴的交点在y轴上方,说明常数项b>O;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次项系数小于0. 解: (1)图象经过原点,则它是正比例函数. ∴ ∴k=-2.∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2). ∴-2=-2k2+18,且3-k≠0,∴k=± ∴当k=± 时,它的图象经过点(0,-2) (3)函数图象平行于直线y=-x,∴3-k=-1,∴k=4. ∴当k=4时,它的图象平行于直线x=-x. (4)∵随x的增大而减小,∴3-k﹤O.∴k>3. ∴当k>3时,y随x的增大而减小. 例12判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上. [分析]由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上. 解: 设过A,B两点的直线的表达式为y=kx+b. 由题意可知, ∴ ∴过A,B两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2. ∴点C(4,2)在直线y=x-2上.∴A(3,1),B(0,-2),C(4,2)在同一条直线上. 学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上. 探索与创新题 主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用. 例13老师讲完“一次函数”这节课后,让同学们讨论下列问题: (1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30? 这说明了什么? (2)直线y=-x与y=-x+6的位置关系如何? 甲生说: “y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.” 乙生说: “直线y=-x与y=-x+6是互相平行的.” 你认为这两个同学的说法正确吗? [分析] (1)可先画出这两个函数的图象,从图象中发现,当x>2时,6x>2x+8,所以,y=6x的函数值先达到30. (2)直线y=-x与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的. 解: 这两位同学的说法都正确. 例14某校一名老师将在假期带领学生去北京旅游,用旅行社说: “如果老师买全票,其他人全部半价优惠.”乙旅行社说: “所有人按全票价的6折优惠.”已知全票价为240元. (1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费; (2)就学生人数讨论哪家旅行社更优惠. [分析]先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论. 解: (1)甲旅行社的收费y甲(元)与学生人数x之间的函数关系式为 y甲=240+ ×240x=240+120x. 乙旅行社的收费y乙(元)与学生人数x之间的函数关系式为 y乙=240×60%×(x+1)=14
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 经典 答案