高一数学公式大全.docx
- 文档编号:24936405
- 上传时间:2023-06-03
- 格式:DOCX
- 页数:12
- 大小:18.60KB
高一数学公式大全.docx
《高一数学公式大全.docx》由会员分享,可在线阅读,更多相关《高一数学公式大全.docx(12页珍藏版)》请在冰豆网上搜索。
高一数学公式大全
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:
其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:
角B是边a和边c的夹角
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r乘法与因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:
韦达定理
判别式
b2-4ac=0注:
方程有两个相等的实根
b2-4ac>0注:
方程有两个不等的实根
b2-4ac<0注:
方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
(以上k∈Z)
注意:
在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
奇变偶不变,符号看象限。
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
两角和差公式
两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
和差化积公式
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
0度
sina=0,cosa=1,tana=0
30度
sina=1/2,cosa=√3/2,tana=√3/3
45度
sina=√2/2,cosa=√2/2,tana=1
60度
sina=√3/2,cosa=1/2,tana=√3
90度
sina=1,cosa=0,tana不存在
120度
sina=√3/2,cosa=-1/2,tana=-√3
150度
sina=1/2,cosa=-√3/2,tana=-√3/3
180度
sina=0,cosa=-1,tana=0
270度
sina=-1,cosa=0,tana不存在
360度
sina=0,cosa=1,tana=0
等比数列公式
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:
An=A1×q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an
看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出:
a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:
aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
在这个意义下,我们说:
一个正项等
比数列与等差数列是“同构”的。
性质:
①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5)等比数列前n项之和Sn=A1(1-q^n)/(1-q)或
Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1(q=1)
在等比数列中,首项A1与公比q都不为零.
注意:
上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:
银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:
本利和=本金*(1+利率)^存期
等差数列公式
等差数列的通项公式为:
an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
若m+n=p+q则:
存在am+an=ap+aq
若m+n=2p则:
am+an=2ap
以上n均为正整数
文字翻译
第n项的值=首项+(项数-1)*公差
前n项的和=(首项+末项)*项数/2
公差=后项-前项
对称数列公式
对称数列的通项公式:
对称数列总的项数个数:
用字母s表示
对称数列中项:
用字母C表示
等差对称数列公差:
用字母d表示
等比对称数列公比:
用字母q表示
设,k=(s+1)/2
一般数列的通项求法
一般有:
an=Sn-Sn-1(n≥2)
累和法(an-an-1=...an-1-an-2=...a2-a1=...将以上各项相加可得an)。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特别的:
在等差数列中,总有SnS2n-SnS3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。
三者成等比数列
不动点法(常用于分式的通项递推关系)
特殊数列的通项的写法
1,2,3,4,5,6,7,8.......---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,.........------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前n项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d首项a1,公差d,an第n项数
an=ak+(n-k)dak为第k项数
若a,A,b构成等差数列则A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即Sn=a1+a2+...+an;
那么Sn=na1+n(n-1)d/2
=dn^2(即n的2次方)/2+(a1-d/2)n
还有以下的求和方法:
1,不完全归纳法2累加法3倒序相加法
(二)1.等比数列:
通项公式an=a1*q^(n-1)(即q的n-1次方)a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b若构成等比中项,则G^2=ab(a,b,G不等于0)
(3)若m+n=p+q则am×an=ap×aq
2.等比数列前n项和
设a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注:
q不等于1;
Sn=na1注:
q=1
求和一般有以下5个方法:
1,完全归纳法(即数学归纳法)2累乘法3错位相减法4倒序求和法5裂项相消法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学公式 大全