人教版六年级数学上册期中知识点汇总.docx
- 文档编号:24908865
- 上传时间:2023-06-02
- 格式:DOCX
- 页数:12
- 大小:29.36KB
人教版六年级数学上册期中知识点汇总.docx
《人教版六年级数学上册期中知识点汇总.docx》由会员分享,可在线阅读,更多相关《人教版六年级数学上册期中知识点汇总.docx(12页珍藏版)》请在冰豆网上搜索。
人教版六年级数学上册期中知识点汇总
人教版六年级数学上册期中知识点汇总
第一单元分数乘法
(一)分数乘法的意义
1、分数乘整数:
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:
×6,表示:
6个
相加是多少,还表示
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:
一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:
6×
,表示:
6的
是多少。
×
,表示:
的
是多少。
(二)分数乘法的计算法则
1、整数和分数相乘:
整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:
分子相乘的积作分子,分母相乘的积作分母。
3、注意:
能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实际问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量
(3)根据线段图写出等量关系式:
单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2、乘法应用题有关注意概念。
(1)乘法应用题的解题思路:
已知一个数,求这个数的几分之几是多少?
(2)找单位“1”的方法:
从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:
小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?
题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?
”
(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:
求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”
(10)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11)单位“1”的特点:
①单位“1”为分母;②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;
②少的对应量对少的分率;
③增加的对应量对增加的分率;
④减少的对应量对减少的分率;
⑤提高的对应量对提高的分率;
⑥降低的对应量对降低的分率;
⑦工作总量的对应量对工作总量的分率;
⑧工作效率的对应量对工作效率的分率;
⑨部分的对应量对部分的分率;
⑩总量的对应量对总量的分率;
例如:
1、求一个数的几分之几是多少?
(求一个数的几分之几用乘法计算)
方法:
单位“1”的数量×对应分率=对应数量。
2、分数的连乘。
找到每一个分率的单位“1”。
(五)倒数
1、倒数:
乘积是1的两个数互为倒数。
2、求倒数的方法:
把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:
倒数必须是成对的两个数,单独的一个数不能称做倒数。
第二单元位置与方向
一、确定物体位置的方法:
1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:
东--西;南--北;南偏东--北偏西。
第三单元分数除法
(一)分数除法的意义:
分数除法的意义:
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:
表示:
已知两个数的积是
与其中一个因数
,求另一个因数是多少。
÷4表示已知两个数的积是
与其中一个因数4,求另一个因数是多少。
还表示把
平均分成4份,每份是多少。
(二)分数除法的计算:
分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(三)比和比的应用:
1.比的意义:
两个数相除又叫做两个数的比。
比的后项不能为0。
2.比值的意义:
比的前项除以后项所得的商,叫做比值。
3.比值的表示方式:
通常用分数、小数和整数表示。
4.比同除法的关系:
比的前项相当于被除数,后项相当于除数,比值相当于商.
5.比同分数的关系:
比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
7.化简比的方法:
根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。
例如:
(1)16﹕20=(16÷4)﹕(20÷4)=4﹕5
(2)
﹕
=(
×12)﹕(
×12)=10﹕9
(3)1.8﹕0.09=(1.8×100)﹕(0.09×100)
=180﹕9=20﹕1
8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
9.按比例分配的解题方法:
(1)先求出总的份数,再求出各部分数量占总数的几分之几。
(2)用总数乘各部分的分率求出各部分的数量。
10.分数除法中,被除数与商的大小关系:
一个数(0除外)除以一个真分数,所得的商大于它本身。
一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
一个数(0除外)除以一个带分数,所得的商小于它本身。
(四)解分数应用题注意事项:
1.找单位“1”的方法:
从含有分率的句子中找,“的”前或“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:
求单位“1”是最后一步用除法,其余计算应在前)。
数量关系:
单位“1”×对应分率=对应数量;
对应量÷对应分率=单位“1”的量
3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
4.单位“1”的特点:
①单位“1”为分母; ②单位“1”为不变量。
5.“已知一个数的几分之几是多少,求这个数”的解题方法:
(1)设单位“1”的量为x,列方程解答。
(2)对应数量÷对应分率=单位“1”的总数量。
6.工程问题:
把工作总量看作单位“1”,
工作效率=
工作时间=1÷工作效率
合作时间 = 工作总量÷工作效率之和
第四单元比
1、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0。
例如15:
10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
2、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:
路程÷速度=时间。
3、区分比和比值
比:
表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:
相当于商,是一个数,可以是整数,分数,也可以是小数。
4、比和除法、分数的联系与区别:
(区别)除法是一种运算,分数是一个数,比表示两个数的关系。
比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。
注意:
体育比赛中出现两队的分是2:
0等,这只是一种记分的形式,不表示两个数相除的关系。
5、比的基本性质
(1)根据比、除法、分数的关系:
商不变的性质:
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:
分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
根据比的基本性质,把比化成最简整数比。
(3)化简比:
用求比值的方法。
注意:
最后结果要写成比的形式。
如:
15∶10=15÷10=3/2=3∶25。
按比例分配:
把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
人教版一年级数学上册期中知识点汇总
第一单元准备课
1、数一数
数数:
数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:
当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:
当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
第二单位置
1、认识上、下
体会上、下的含义:
从两个物体的位置理解:
上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:
一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:
确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。
右手所在的一边为右边,左手所在的一边为左边。
要点提示:
在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元1--5的认识和加减法
一、1--5的认识
1、1—5各数的含义:
每个数都可以表示不同物体的数量。
有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:
1、2、3、4、5.
从后往前数:
5、4、3、2、1.
3、1—5各数的写法:
根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。
前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。
前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。
第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合
数的组成:
一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。
例如:
5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:
把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:
计算5以内数的加法,可以采用点数、接着数、数的组成等方法。
其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:
从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:
计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0
1、0的意义:
0表示一个物体也没有,也表示起点。
2、0的读法:
0读作:
零
3、0的写法:
写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:
任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:
0+8=89-0=94-4=0
第四单元认识图形
1、长方体的特征:
长长方方的,有6个平平的面,面有大有小。
如图:
2、长方体的特征:
四四方方的,有6个平平的面,面的大小一样。
如图:
3、圆柱的特征:
直直的,上下一样粗,上下两个圆面大小一样。
放在桌子上能滚动。
立在桌子上不能滚动。
如图:
4、球的特征:
圆圆的,很光滑,它的表面是曲面。
放在桌子上能向任意方向滚动。
5、立体图形的拼摆:
用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。
用小圆柱可以拼成更大的圆柱。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 六年级 数学 上册 期中 知识点 汇总