CBTC系统资料.doc
- 文档编号:2486560
- 上传时间:2022-10-30
- 格式:DOC
- 页数:23
- 大小:4.53MB
CBTC系统资料.doc
《CBTC系统资料.doc》由会员分享,可在线阅读,更多相关《CBTC系统资料.doc(23页珍藏版)》请在冰豆网上搜索。
CBTC系统资料
一.移动闭塞系统工作原理和特点
上面我们介绍的是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。
如图33所示。
图33.不同闭塞制式的列车运行间隔示意图
图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。
移动闭塞(Movingblock)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。
移动闭塞系统相比现有的ATC系统主要有以下特点:
1、可以缩小列车之间的行车间隔;
2、车-地之间的信息交换,不再依赖于轨道电路;
3、车辆控制中心掌握在线运行各次列车的精确位置和速度;
4、列车与控制中心之间保持不间断地双向通信;
5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路;
6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。
基于通信的列车运行控制系统(Communication-BasedTrainControl—简称CBTC系统),便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。
近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础,CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。
下面我们先对基于感应环线通信的移动闭塞CBTC系统进行一些分析,然后对基于无线(Radio)通信虚拟闭塞的CBTC系统作些介绍。
二.基于感应环线通信的移动闭塞制式CBTC系统
移动闭塞系统在城市轨道交通中运用的前提,是实现列车与地面的双向实时通信,而双向通信的地面有线设备,目前主要有两种方式,一种是在全线敷设用于发送微波的波导管,这种制式的移动闭塞,已于2003年初,在国外的城市轨道交通中得到运用;另一种是利用敷设于全线的感应环线进行双向通信,这种制式的移动闭塞,在国外早已经得到运用,目前我国至少有两个城市的轨道交通,决定采用这种制式。
由于篇幅所限,尽可能结合国内的实际情况,这里主要介绍基于“感应环线”通信的移动闭塞CBTC系统。
移动闭塞原理示意图,如图34所示。
图34、移动闭塞原理示意图
(一)移动闭塞系统的基本构成
移动闭塞系统由系统管理中心(SMC);车辆控制中心(VCC);车载设备(VOBC);车站控制器(STC);感应环线通信系统设备;车场系统设备;车站发车指示器、站台紧急停车按钮、接口等设备组成。
如图所示,系统管理中心与车辆控制中心进行双向通信,完成对所有列车的自动监控;车辆控制中心与全线的列车进行不间断地双向通信,所有的列车将其所在的精确位置和运行速度,报告给车辆控制中心;车辆控制中心在完全掌握所有列车的精确位置、速度等信息的前提下,告知各列列车运行的目标停车点;列车接收车辆控制中心发来的目标停车点信息,车载计算机根据允许运行的距离、所在区段的线路条件及列车的性能等,不断地计算运行速度,自动地完成速度控制。
车辆控制中心还与车站联锁装置通信,完成列车进路的排列。
1、系统管理中心(SMC)的构成
系统管理中心,对系统进行全面的协调管理,完成所有的列车自动监控功能。
其设备设于运营控制中心(OCC),系统的软件/硬件都按模块化的原则设计。
其主要硬件部分包括:
(1)系统管理中心工作站。
除系统服务器外,还配置调度员工作站、调度长工作站、模拟显示工作站、系统维护工作站、运行图编辑工作站及车场监视工作站。
(2)运行图调整服务器(SRS)。
冗余的运行图调整服务器,通过系统管理中心I/O与车辆控制中心相连,以实现运行图调整服务器与车辆控制中心的通信,运行图调整服务器还与SCADA、时钟、无线等系统接口。
(3)数据日志服务器,冗余配置,它可以保留二个月以上的运行数据。
(4)网络通信设施。
包括:
系统管理中心的双局域网、冗余交换机、与光纤传输通道的冗余接入设施、与培训中心及综合维修基地连接的通信设施等。
(5)车站控制器紧急通路(SCEG),当车辆控制中心出现故障,不能对系统进行控制时,管理中心通过车站控制紧急通路,直接与车站控制器(STC)进行通信连接,实现对在线列车和轨旁设备的监控。
车站控制器紧急通路有紧急通路切换开关设备、协议转换单元(PCU)组成,每台协议转换单元可与两台车站控制器进行通信连接。
(6)系统管理中心I/O机架。
(7)投影模拟显示系统。
包括:
模拟显示控制工作站,及背投模拟显示屏。
还有车场系统管理中心工作站,综合维修基地监测工作站、仿真及培训远程终端设备等。
2、车辆控制中心(VCC)的构成
车辆控制中心,位于运营控制中心,它有以下主要部分构成:
(1)车辆控制中心的中央计算机。
中央计算机采取三取二的配置,它包括三台工业级计算机,以及相关的输入/输出接口;三个中央处理单元通过显示/键盘选择开关,来共享一个显示和键盘;还有通用接口盒、电缆分线盒等。
(2)车辆控制中心的I/O机架。
主要设备有:
多路复用输入设备;中央同步设备;电源、定时器、保险丝等。
(3)车辆控制中心的数据传输架。
(4)车辆控制中心的调度员终端。
(5)中央紧急停车按钮(CESB)。
它与车辆控制中心接口,当调度员按下该按钮,将封锁所有的轨道,而且所有的列车立即停车;当紧急停车按钮中插入钥匙后,才可以解除。
车辆控制中心还设有数据记录计算机、打印机等其他设备。
3、轨旁设备
轨旁设备,主要有车站控制器(STC);感应环线通信系统;系统管理中心的车站工作站等设备。
(1)车站控制器,设于设备集中站,每个车站控制器都有一个道岔安全控制器,其中带冗余的双CPU固态联锁控制器,是车站控制器的核心单元。
车站控制器通过双共线调制解调链路与车辆控制中心通信,它有调制、解调器机架、接口盘、电源机架、预处理器及其机架等组成。
(2)感应环线通信系统,位于设备室和轨旁,它有以下设备组成:
馈电设备(FID);入口馈电设备(EFID);远端环线盒;感应环线电缆;支架等。
感应环线电缆由扭绞铜制线芯和绝缘防护层组成,环线敷设于轨道之间,每25米交叉一次。
(3)系统管理中心的车站工作站,由工业级计算机和接入设备组成,其接入光纤通信环网,实现与系统管理中心的远程通信。
它与车站控制器接口,实现车站的本地控制;还与旅客信息向导系统等设备接口。
轨旁设备还包括:
站台紧急停车按钮;站台发车指示器;车站现地控制盘;及信号机、转撤机等现场设备。
4、车载设备
ATC车载设备主要包括:
车载控制器(VOBC)及其外围设备。
(1)车载控制器,由电子单元(EU)、接口继电器单元(IRU)、供电单元等组成。
电子单元包括天线滤波器、高频接收器、数据接收器、数据发送器、高频发送器、定位计算机、双CPU处理单元、输出/输入端口、发送/接收卡、车辆识别卡、输出继电器、距离测量控制、转速表放大器等。
接口继电器单元包括:
继电器面板、滤波/防护模块、电子单元与接口继电器单元的互联电缆等。
(2)车载控制器的外围设备包括天线,(每个车载控制器设2个接收天线和2个发送天线);速度传感器,每个车载控制器设二个速度传感器;司机显示盘(TOD),每列车设置两套。
(3)接口。
信号系统内部接口包括:
与信号监测子系统的接口;与电源子系统的接口;与模拟显示屏的接口;与发车指示器的接口;与中央紧急停车按钮的接口;与信号机、转辙机等继电器控制电路的接口;与车站现地控制盘及站台紧急停车按钮的接口;与车场的接口;人机接口;主系统内部间的接口等。
信号系统外部接口包括:
与无线通信系统的接口;与时钟系统的接口;与通信传输系统的接口;与旅客信息系统(包括车上)的接口;与车辆的接口;与车辆管理系统的接口;与电力SCADA系统、FAS系统、BAS系统等的接口等。
(二)系统功能
基于感应环线通信的移动闭塞系统,能实现90秒的最小运行间隔。
后续列车与前一列车的安全间隔距离,是根据列车当前的运行速度、制动曲线,以及列车在线路上的位置而动态计算出来。
由于列车位置的定位精度高,因此,后续列车可以在该线路区段,以最大允许速度,安全地接近前一列车最后一次确认的尾部位置,并与之保持安全制动距离,如图35所示。
图35.移动闭塞目标点示意图
该“安全距离”是指后续列车的指令停车点(目标点)与前一列车尾部位置之间的一个固定距离,它是以最不利情况发生时,仍能保证安全间隔为前提计算而得。
假如列车采用常用制动,列车可以停在目标点,当常用制动失效,实施紧急制动时,除了紧急制动所需时间外,必须增加系统作用时间和牵引停止到紧急制动启动的延时时间,这种情况下列车真正的停车点并不是目标点,而是远于目标点,但必须停在安全距离的范围内。
为了确保列车的安全运行,列车必须连续不断地接收目标点的更新信息,系统设定列车在3秒内,收不到信息,就判断为通信发生故障,迫使列车紧急停车,保证列车运行安全。
目标停车点的周期性前移,主要取决于前一列车向前移动,和其他限制被解除。
在车辆控制中心,接收来自列车和现场设备的输入报文,当确认输入报文有效后,才产生相应的指令报文。
系统管理中心对整个系统内的列车进路,及运行图/时刻表进行管理,并向负责联锁及道岔控制的车辆控制中心发出排列进路的请求,完成道岔联锁功能。
一旦车辆控制中心确认道岔已锁在规定位置,才允许列车通过该道岔。
在车辆控制层,车载控制器将确保列车的特定功能(如实施速度限制和车门控制等)的安全控制,均在车辆控制中心限制范围内,车载控制器对来自车辆控制中心的报文,校核其冗余性、一致性、合理性,然后解译,并执行该报文。
当然它只对该列车(地址)为报头的报文作出反应,如果报文不是特定选址某一列车,那么车载控制器只从该报文提取环线识别号。
以识别从一个环线段至下一个环线段的转换。
移动闭塞系统功能框图见图36所示。
1、管理层——系统管理中心(SMC)
系统管理中心,负责列车自动控制系统的全面管理。
它起着系统与中心调度员及系统其他用户间接口的作用,它除了监控和显示列车位置、调整列车运行、排列列车进路、实现停站时间控制等功能外,还具备以下功能:
调度列车投入运营(增加或减少投入运营的列车);运行图/时刻表管理(包括时刻表的生成、指定和取消);自动调整列车运行(调整列车速度和停站时间);监测列车性能的状况并收集ATO数据;自动跟踪列车;监督列车位置、速度、运行方向;指挥列车操作和排列进路(联锁控制);优化折返作业;列车及线路的报警等。
图36.移动闭塞系统功能框图
(1)系统管理中心的中央工作站:
①系统维护工作站
所有工作站都由系统维护工作站管理,也即系统维护工作站对网络中的计算机系统进行维护,该工作站主要监视SMC网络性能,进行记录和对整个系统进行诊断和维护。
②运行图/时刻表编辑工作站
运行图/时刻表编辑工作站,可以在离线情况下对运行图/时刻表进行编辑,完成的运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CBTC 系统 资料