《金融学第二版》讲义大纲及课后习题答案详解 第15章.docx
- 文档编号:24776867
- 上传时间:2023-06-01
- 格式:DOCX
- 页数:15
- 大小:116.18KB
《金融学第二版》讲义大纲及课后习题答案详解 第15章.docx
《《金融学第二版》讲义大纲及课后习题答案详解 第15章.docx》由会员分享,可在线阅读,更多相关《《金融学第二版》讲义大纲及课后习题答案详解 第15章.docx(15页珍藏版)》请在冰豆网上搜索。
《金融学第二版》讲义大纲及课后习题答案详解第15章
CHAPTER15
OPTIONSANDCONTINGENTCLAIMS
Objectives
∙Howtouseoptionstomodifyone’sexposuretoinvestmentrisk.
∙Tounderstandthepricingrelationshipsthatexistamongcalls,puts,stocksandbonds.
∙ToexplainthebinomialandBlack-Scholesoption-pricingmodelsandapplythemtothevaluationofcorporatebondsandothercontingentclaims.
∙Toexploretherangeoffinancialdecisionsthatcanbefruitfullyanalyzedintermsofoptions.
Outline
15.1HowOptionsWork
15.2InvestingwithOptions
15.3ThePut-CallParityRelation
15.4VolatilityandOptionPrices
15.5Two-State(Binomial)Option-Pricing
15.6DynamicReplicationandtheBinomialModel
15.7TheBlack-ScholesModel
15.8ImpliedVolatility
15.9ContingentClaimsAnalysisofCorporateDebtandEquity
15.10CreditGuarantees
15.11OtherApplicationsofOption-PricingMethodology
Summary
∙Optionscanbeusedtomodifyaninvestor’sexposuretoinvestmentrisk.Bycombiningtherisk-freeassetandstock-indexcalloptions,aninvestorcanachieveaguaranteedminimumrateofreturnplussubstantialupsideparticipationinthestockmarket.
∙AportfolioconsistingofastockplusaEuropeanputoptionisequivalenttoarisk-freebondwithafacevalueequaltotheoption’sexercisepriceplusaEuropeancalloption.ThereforebytheLawofOnePrice,wegettheput-callparityrelation:
whereSisthestockprice,Pthepriceoftheput,rtherisk-freeinterestrate,Tthematurityoftheoption,andCthepriceofthecall.
∙Onecancreateasyntheticoptionfromtheunderlyingstockandtherisk-freeassetthroughadynamicreplicationstrategythatisself-financingaftertheinitialinvestment.BytheLawofOnePrice,theoption’spriceisgivenbytheformula:
where:
C=priceofthecall
S=priceofthestock
E=exerciseprice
r=risk-freeinterestrate(theannualizedcontinuouslycompoundedrateonasafeassetwiththesamematurityastheoption)
T=timetomaturityoftheoptioninyears
=standarddeviationoftheannualizedcontinuouslycompoundedrateofreturnonthestock
d=continuousdividendyieldonthestock
ln=naturallogarithm
e=thebaseofthenaturallogfunction(approximately2.71828)
N(d1)=theprobabilitythatarandomdrawfromastandardnormaldistributionwillbelessthand1.
∙Thesamemethodologyusedtopriceoptionscanbeusedtovaluemanyothercontingentclaims,includingcorporatestocksandbonds,loanguarantees,andthe“realoptions”imbeddedininvestmentsinresearchanddevelopmentandflexiblemanufacturingtechnology.
SolutionstoProblemsatEndofChapter
PayoffDiagrams
1.GraphthepayoffforaEuropeanputoptionwithexercisepriceE,writtenonastockwithvalueS,when:
a.Youholdalongposition(i.e.,youbuytheput)
b.Youholdashortposition(i.e.,youselltheput)
SOLUTION:
a.
b.
2.GraphthepayofftoaportfolioholdingoneEuropeancalloptionandoneEuropeanputoption,eachwiththesameexpirationdateandeachwithexercisepriceE,whenbothoptionsareonastockwithvalueS.
SOLUTION:
Investingwithoptions
3.Therisk-freeone–yearrateofinterestis4%,andtheGlobalexstockindexisat100.Thepriceofone-yearEuropeancalloptionsontheGlobalexstockindexwithanexercisepriceof104is8%ofthecurrentpriceoftheindex.AssumethattheexpecteddividendyieldonthestocksintheGlobalexindexiszero.Youhave$1milliontoinvestforthenextyear.Youplantoinvestenoughofyourmoneyinone-yearT-billstoinsurethatyouwillatleastgetbackyouroriginal$1million,andyouwillusetherestofyourmoneytobuyGlobalexcalloptions.
a.AssumingthatyoucaninvestfractionalamountsinGlobalexoptions,showthepayoffdiagramforyourinvestment.MeasuretheGlobalexindexonthehorizontalaxisandtheportfoliorateofreturnontheverticalaxis.Whatistheslopeofthepayofflinetotherightofanindexvalueof104?
b.Ifyouthinkthatthereisaprobabilityof.5thattheGlobalexindexayearfromnowwillbeup12%,aprobabilityof.25thatitwillbeup40%,andaprobabilityof.25thatitwillbedown20%,whatistheprobabilitydistributionofyourportfoliorateofreturn?
SOLUTION:
a.
Toinsurethatyouwillatleastgetbackyouroriginal$1million,youneedtoinvest
inT-bills.
Youcanbuy
options.
Theslopeofthepayofflinetotherightofanindexvalueof104is4807.69,asseenfromthegraph:
b.
Put-CallParity
4.
a.Showhowonecanreplicateaone-yearpurediscountbondwithafacevalueof$100usingashareofstock,aputandacall.
b.SupposethatS=$100,P=$10,andC=$15.Whatmustbetheone-yearinterestrate?
c.Showthatiftheone-yearrisk-freeinterestrateislowerthaninyouranswertopartb,therewouldbeanarbitrageopportunity.(Hint:
Thepriceofthepurediscountbondwouldbetoohigh).
SOLUTION:
a.Toreplicateaone-yearpurediscountbondwithafacevalueof$100,buyashareofstock,andaEuropeanputwithexerciseprice$100,andsellaEuropeancallwithanexerciseprice$100.
b.S=$100,P=$10,andC=$15.
E/(1+r)=S+P-C
$100/(1+r)=$100+$10-$15=$95
r=100/95-1=.053or5.3%
c.Ifr=4%,thenonecouldmakerisk-freearbitrageprofitsbyborrowingat4%andinvestinginsynthetic1-yearpurediscountbondsconsistingofashareofstock,aEuropeanputwithexerciseprice$100,andashortpositioninaEuropeancallwithanexerciseprice$100.Thesyntheticbondwouldcost$95andpayoff$100atmaturityin1year.Theprincipalandinterestonthe$95itcoststobuythissyntheticbondwouldbe$95x1.04=$98.8.Thustherewouldbeapurearbitrageprofitof$1.20perbondayearfromnowwithzeroinitialoutlayoffunds.
5.A90-dayEuropeancalloptiononashareofthestockofToshiroCorporationiscurrentlytradingat2,000yenwhereasthecurrentpriceoftheshareitselfis2,400yen.90-dayzero-couponsecuritiesissuedbythegovernmentofJapanaresellingfor9,855yenper10,000yenfacevalue.Inferthepriceofa90-dayEuropeanputoptiononthisstockifboththecallandputhaveacommonexercisepriceof500yen.
SOLUTION:
Usingtheexpressionforput-callparity,P=-S+E/(1+r)T+C
Sistheshareprice,Pisthepriceoftheput,CisthepriceofthecallandEisthecommonexerciseprice.
Sincegovernmentbondsaresellingat.9855per1yenoffacevalue,thisisthediscountfactorforcomputingthePVoftheexerciseprice.Thereisnoneedtocomputetherisklessrate,r.
Substitutingintheparityequationweget:
P=-2,400+500x.9855+2,000=92.75yen
6.GordonGekkohasassembledaportfolioconsistingoften90-dayUSTreasurybills,eachhavingafacevalueof$1,000andacurrentpriceof$990.10,and20090-dayEuropeancalloptions,eachwrittenonashareofParamountstockandhavinganexercisepriceof$50.00.Gekkoisofferingtotradeyouthisportfoliofor300sharesofParamountstock,whichiscurrentlyvaluedat$215.00ashare.If90-dayEuropeanputoptionsonParamountstockwitha$50.00exercisepricearecurrentlyvaluedat$25.00,
a.InferthevalueofthecallsinGekko’sportfolio.
b.DeterminewhetheryoushouldacceptGekko’soffer.
SOLUTION:
a.Usingput-callparity,thecurrentpriceofacallisfoundtobeapproximately$190.50asfollows:
C=S-E/(1+r)T+P=$215-$50x.9901+$25=$190.495
b.ThevalueofGekko’sportfoliois10x$990.10+200x$190.495=$48,000
Butthevalueof300sharesis$64,500.WeshouldrejectGekko’soffer.
7.
ThestockofKakkonen,Ltd.,ahottunadistributor,currentlylistsfor$500.00ashare,whereasone-yearEuropeancalloptionsonthisstock,withanexercisepriceof$200.00,sellfor$400.00andEuropeanputoptionswithasimilarexpirationdateandexercisepricesellfor$84.57.
a.Infertheyieldonaone-year,zero-couponU.S.governmentbondsoldtoday.
b.Ifthisyieldisactuallyat9%,constructaprofitabletradetoexploitthepotentialforarbitrage.
SOLUTION:
a.Usingput-callparity,wecaninfertherisklessyieldtobeapproximately8.36%asfollows:
Aportfolioconsistingofashareofthestock,aput,andashortpositioninacallisequivalenttoa1-yearT-billwithafacevalueofE.ThereforethepriceofsuchaT-billwouldhavetobe$184.57:
E/(1+r)T=S+P-C=$500.00+$84.57-$400.00=$184.57
1+r=200/184.57=1.0836
r=.0836or8.36%
b.TherearemanywaystoexploittheviolationoftheLawofOnePricetomakearbitrageprofits.Sincetherisk-freeinterestrateis9%,andtheimpliedinterestrateonthereplicatingportfoliois8.36%,wecouldgoshortthereplicatingportfolioandinvesttheproceedsinT-bills.Forexample,atcurrentprices,short-sella“unit”portfolio,whichconsistsoflongpositionsinoneputandoneshareandwritingonecall,toearnimmediaterevenueof$184.57.Theportfolioyousoldshortrequirespaymentof$200oneyearfromnow.Ifyouinvestthe$184.57inone-yearT-billsyouwillhave1.09x$184.57=$201.18ayearfromnow.Thusyouwillearnarisk-freearbitrageprofitof$1.18withnooutlayofyourownmoney.
Two-StateOptionPricing
8.Derivetheformulaforthepriceofaputoptionusingthetwo-statemodel.
SOLUTION:
Topricetheputoption,wecreateasyntheticoptionbysellingshortafraction(denotethefraction“a”)andlend$binrisk-freeasset.DenotethepriceofthestockS,thepriceoftheputoptionP,thestockpricewhenthenextperiodisan“up”tobeuS,thestockpricewhenthenextperiodisa“down”tobedS,thepayoffsoftheputoptionineachstatePuandPd,andtheris
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金融学第二版 金融学第二版讲义大纲及课后习题答案详解 第15章 金融学 第二 讲义 大纲 课后 习题 答案 详解 15