山西省中考数学试题word版含答案.docx
- 文档编号:24767794
- 上传时间:2023-06-01
- 格式:DOCX
- 页数:77
- 大小:193.41KB
山西省中考数学试题word版含答案.docx
《山西省中考数学试题word版含答案.docx》由会员分享,可在线阅读,更多相关《山西省中考数学试题word版含答案.docx(77页珍藏版)》请在冰豆网上搜索。
山西省中考数学试题word版含答案
2019年山西省中考数学试卷
一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,
只有一项符合题目要求,请选出并在答题卡上将该项涂黑
1.(3分)﹣3的绝对值是()
A.﹣3B.3C.D.
2.(3分)下列运算正确的是()
2
A.2a+3a=5a
222
=a
B.(a+2b)+4b
2?
a3=a6D.(﹣ab2)3=﹣a3b6
C.a
3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,
与“点”字所在面相对面上的汉字是()
A.青B.春C.梦D.想
4.(3分)下列二次根式是最简二次根式的是()
A.B.C.D.
5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直
线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()
A.30°B.35°C.40°D.45°
6.(3分)不等式组的解集是()
A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1
第1页(共29页)
7.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,
再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五
台山景区进山门票总收入用科学记数法表示()
8
A.2.016×10
7
元B.0.2016×10
元
7元D.2016×104元
C.2.016×10
2﹣4x﹣1=0配方后可化为()
8.(3分)一元二次方程x
A.(x+2)
2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5
9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不
同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似
看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B
两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),
以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线
钢拱的函数表达式为()
2
A.y=x
2
B.y=﹣x
2D.y=﹣x2
C.y=x
10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为
圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()
A.﹣B.+C.2﹣πD.4﹣
二、填空题(本大题共5个小题,每小题3分,共15分)
11.(3分)化简﹣的结果是.
12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各
占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择
第2页(共29页)
一种统计图,最适合的统计图是.
13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路
(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道
路的宽为xm,则根据题意,可列方程为.
14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正
半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)
的图象恰好经过点C,则k的值为.
15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,
∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC
重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.
三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
16.(10分)
(1)计算:
+(﹣)
﹣2﹣3tan60°+(π﹣)0.
(2)解方程组:
17.(7分)已知:
如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:
BC=DF.
第3页(共29页)
18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太
原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖
礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测
评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测
评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:
(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能
否被录用(只写判断结果,不必写理由).
(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,
或“平均数”中的一个方面评价即可).
(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中
的两个场馆进行颁奖礼仪服务,四个场馆分别为:
太原学院足球场,太原市沙滩排球场,
山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表
示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀
放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画
树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.
19.(8分)某游泳馆推出了两种收费方式.
方式一:
顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每
次游泳再付费30元.
方式二:
顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二
的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
第4页(共29页)
(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.
20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量
方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不
同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,
小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均
值作为测量结果,测量数据如下表(不完整).
课题测量旗杆的高度
成员组长:
xxx组员:
xxx,xxx,xxx
测量工具测量角度的仪器,皮尺等
测量示意图说明:
线段GH表示
学校旗杆,测量角度
的仪器的高度AC=
BD=1.5m,测点A,
B与H在同一条水平
直线上,A,B之间
的距离可以直接测
得,且点G,H,A,
B,C,D都在同一竖
直平面内,点C,D,
E在同一条直线上,
点E在GH上.
测量数据测量项目第一第二平均
次次值
∠GCE的度数25.6°25.8°25.7°
∠GDE的度数31.2°30.8°31°
A,B之间的距离5.4m5.6m
⋯⋯
任务一:
两次测量A,B之间的距离的平均值是m.
第5页(共29页)
任务二:
根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.
(参考数据:
sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°
≈0.86,tan31°≈0.60)
任务三:
该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量
旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?
(写出一条即可)
21.(8分)阅读以下材料,并按要求完成相应的任务:
莱昂哈德?
欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重
要常数,公式和定理,下面就是欧拉发现的一个定理:
在△ABC中,R和r分别为外接
圆和内切圆的半径,O和I分别为其中外心和内心,则OI
22
=R﹣2Rr.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的
半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三
22
条角平分线的交点)之间的距离OI=d,则有d=R﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).
∴△MDI∽△ANI.∴=,∴IA?
ID=IM?
IN,①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.
∵DE是⊙O的直径,所以∠DBE=90°.
∵⊙I与AB相切于点F,所以∠AFI=90°,
第6页(共29页)
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对的圆周角相等),
∴△AIF∽△EDB,
∴=.
∴IA?
BD=DE?
IF②
任务:
(1)观察发现:
IM=R+d,IN=(用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务
(1),
(2)的结论,按照上面的证明思路,
完成该定理证明的剩余部分;
(4)应用:
若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与
内心之间的距离为cm.
22.(11分)综合与实践
动手操作:
第一步:
如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点
C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,
且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.
第二步:
再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.
第三步:
在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,
FG,GM,ME.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,∠BEC的度数是,的值是.
(2)在图5中,请判断四边形EMGF的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱
形(正方形除外),并写出这个菱形:
.
第7页(共29页)
23.(13分)综合与探究
2
如图,抛物线y=ax
+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D
是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求m的值;
(3)在
(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否
存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?
若存在,请直
接写出点M的坐标;若不存在,请说明理由.
第8页(共29页)
2019年山西省中考数学试卷
参考答案与试题解析
一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,
只有一项符合题目要求,请选出并在答题卡上将该项涂黑
1.(3分)﹣3的绝对值是()
A.﹣3B.3C.D.
【分析】根据绝对值的定义,﹣3的绝对值是指在数轴上表示﹣3的点到原点的距离,即
可得到正确答案.
【解答】解:
|﹣3|=3.
故﹣3的绝对值是3.
故选:
B.
【点评】本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.
2.(3分)下列运算正确的是()
2
A.2a+3a=5a
222
=a
B.(a+2b)+4b
2?
a3=a6D.(﹣ab2)3=﹣a3b6
C.a
【分析】直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的
乘除运算法则分别化简得出答案.
【解答】解:
A、2a+3a=5a,故此选项错误;
B、(a+2b)
2=a2+4ab+4b2,故此选项错误;
2?
a3=a5,故此选项错误;
C、a
2)3=﹣a3b6,正确.
D、(﹣ab
故选:
D.
【点评】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘
除运算,正确掌握相关运算法则是解题关键.
3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,
与“点”字所在面相对面上的汉字是()
第9页(共29页)
A.青B.春C.梦D.想
【分析】根据正方体展开z字型和L型找对面的方法即可求解;
【解答】解:
展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”
是对面;
故选:
B.
【点评】本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.
4.(3分)下列二次根式是最简二次根式的是()
A.B.C.D.
【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,
否则就不是.
【解答】解:
解:
A、,故A不符合题意;
B、,故B不符合题意;
C、,故C不符合题意;
D、是最简二次根式,故D符合题意.
故选:
D.
【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:
被开方数不
含分母;被开方数不含能开得尽方的因数或因式.
5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直
线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()
A.30°B.35°C.40°D.45°
第10页(共29页)
【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角
的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.
【解答】解:
∵AB=AC,且∠A=30°,
∴∠ACB=75°,
在△ADE中,∵∠1=∠A+∠AED=145°,
∴∠AED=145°﹣30°=115°,
∵a∥b,
∴∠AED=∠2+∠ACB,
∴∠2=115°﹣75°=40°,
故选:
C.
【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握
性质是解题的关键.
6.(3分)不等式组的解集是()
A.x>4B.x>﹣1C.﹣1<x<4D.x<﹣1
【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.
【解答】解:
,
由①得:
x>4,
由②得:
x>﹣1,
不等式组的解集为:
x>4,
故选:
A.
【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:
同大取大;同
小取小;大小小大中间找;大大小小找不到.
7.(3分)五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,
再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五
台山景区进山门票总收入用科学记数法表示()
8元B.0.2016×107元
A.2.016×10
7
C.2.016×10
4
元D.2016×10
元
【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,
第11页(共29页)
n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
7
【解答】解:
120000×168=20160000=2.016×10,
故选:
C.
【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式
为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2﹣4x﹣1=0配方后可化为()
8.(3分)一元二次方程x
A.(x+2)
2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5
【分析】移项,配方,即可得出选项.
2
【解答】解:
x﹣4x﹣1=0,
2﹣4x=1,x
2
﹣4x+4=1+4,x
(x﹣2)2=5,
故选:
D.
【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.
9.(3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不
同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似
看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B
两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),
以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线
钢拱的函数表达式为()
2
A.y=x
2
B.y=﹣x
2
C.y=x
2
D.y=﹣x
【分析】直接利用图象假设出抛物线解析式,进而得出答案.
2
【解答】解:
设抛物线的解析式为:
y=ax,
将B(45,﹣78)代入得:
﹣78=a×452,
第12页(共29页)
解得:
a=﹣,
故此抛物线钢拱的函数表达式为:
y=﹣x2.
故选:
B.
【点评】此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是
解题关键.
10.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为
圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()
A.﹣B.+C.2﹣πD.4﹣
【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据
图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而
可以解答本题.
【解答】解:
∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,
∴tanA=,
∴∠A=30°,
∴∠DOB=60°,
∵OD=AB=,
∴DE=,
∴阴影部分的面积是:
=,
故选:
A.
【点评】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形
结合的思想解答.
第13页(共29页)
二、填空题(本大题共5个小题,每小题3分,共15分)
11.(3分)化简﹣的结果是.
【分析】先把异分母转化成同分母,再把分子相减即可.
【解答】解:
原式=.
故答案为:
【点评】此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么
分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式
化为同分母分式,然后再相加减.
12.(3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各
占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择
一种统计图,最适合的统计图是扇形统计图.
【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,
而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况
选择即可.
【解答】解:
要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支
出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.
故答案为:
扇形统计图
【点评】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.
13.(3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路
(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道
路的宽为xm,则根据题意,可列方程为(12﹣x)(8﹣x)=77.
【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长
方形,根据长方形的面积公式列方程.
【解答】解:
∵道路的宽应为x米,
∴由题意得,(12﹣x)(8﹣x)=77,
第14页(共29页)
故答案为:
(12﹣x)(8﹣x)=77.
【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别
平移到矩形地面的最上边和最左边是做本题的关键.
14.(3分)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正
半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y=(x>0)
的图象恰好经过点C,则k的值为16.
【分析】要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾
股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.
【解答】解:
过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,
∵ABCD是菱形,
∴AB=BC=CD=DA,
易证△ADF≌△BCE,
∵点A(﹣4,0),D(﹣1,4),
∴DF=CE=4,OF=1,AF=OA﹣OF=3,
在Rt△ADF中,AD=,
∴OE=EF﹣OF=5﹣1=4,
∴C(4,4)
∴k=4×4=16
故答案为:
16.
【点评】本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三
第15页(共29页)
角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相
互转化也是解决问题重要方法.
15.(3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,
∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC
重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)
cm.
【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD
=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣
2.
【解答】解:
过点A作AG⊥DE于点G,
由旋转知:
AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,
∴∠AED=∠ADG=45°,
在△AEF中,∠AFD=∠AED+∠CAE=60°,
在Rt△ADG中,AG=DG==3,
在Rt△AFG中,GF==,AF=2FG=2,
∴CF=AC﹣AF=10﹣2,
故答案为:
10﹣2.
【点评】本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关
键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题.
三、解答题(本大题共8个小题,共75分,解答应写出文字说明,证明过程或演算步骤)
第16页(共29页)
16.(10分)
(1)计算:
+(﹣)
﹣2﹣3tan60°+(π﹣)0.
(2)解方程组:
【分析】
(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类
二次根式;
(2)用加减法进行解答便可.
【解答】解:
(1)原式=3+4﹣3+1
=5;
(2)①+②得,
4x=﹣8,
∴x=﹣2,
把x=﹣2代入①得,
﹣6﹣2y=﹣8,
∴y=1,
∴.
【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是
基础题,要求100%得分,不能有失误.
17.(7分)已知:
如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:
BC=DF.
【分析】由已知得出AB=ED,由平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 中考 数学试题 word 答案